hisat-3n/li_hla/main.cpp

485 lines
12 KiB
C++
Raw Permalink Normal View History

2025-01-18 13:09:52 +00:00
//usage: a.out prefix_of_allele_information alignment.bam [-b backbone_id]
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <map>
#include <algorithm>
#include "alignments.hpp"
struct _compatible
{
int weight ;
double value ;
} ;
struct _snpInfo
{
char type ; // d, s, i
int position ;
char nucleotide ;
int length ;
} ;
struct _mdComponent
{
char type ;
int length ;
int num ;
} ;
struct _result
{
int a, b ;
double logLikelihood ;
} ;
std::map<std::string, int> snpNameToId ;
std::map<std::string, int> alleleNameToId ;
std::vector<std::string> alleleIdToName ;
std::vector<struct _snpInfo> snpInfo ; // When using this, we already convert the snp name into snp id
std::vector< std::vector<int> > snpLink ; // What are the allele ids associate with the snp id
std::map<int, std::vector<int> > positionToSnp ; // map of the genomic coordinate to the snp id
std::vector< std::vector<int> > alleleSnpList ; // the list of snp ids associate with this allele
std::vector<int> alleleLength ;
std::vector< struct _pair > alignmentCoords ;
bool CompResult( struct _result a, struct _result b )
{
return a.logLikelihood > b.logLikelihood ;
}
void Split( const char *s, char delimit, std::vector<std::string> &fields )
{
int i ;
fields.clear() ;
if ( s == NULL )
return ;
std::string f ;
for ( i = 0 ; s[i] ; ++i )
{
if ( s[i] == delimit || s[i] == '\n' )
{
fields.push_back( f ) ;
f.clear() ;
}
else
f.append( 1, s[i] ) ;
}
fields.push_back( f ) ;
f.clear() ;
}
int main( int argc, char *argv[] )
{
int i, j, k ;
FILE *fp ;
char buffer[10100] ;
std::vector<std::string> fields ;
int binSize = 50 ;
const char *backboneName = NULL ;
// the compatilibity between the alignment and allele
// The likelihood of this read from this allele
struct _compatible **compatibility ;
int **snpAllele ; // whether a snp showed up in the allele.
Alignments alignments ;
alignments.Open( argv[2] ) ;
for ( i = 3 ; i < argc ; ++i )
{
if ( !strcmp( argv[i], "-b" ) )
{
backboneName = argv[i + 1] ;
alignments.OnlyChrom( backboneName ) ;
++i ;
}
else
{
fprintf( stderr, "Unknown argument %s.\n", argv[i] ) ;
exit( 1 ) ;
}
}
// Parse the files associate with the snps
// Firstly, read in the snp list have the information
sprintf( buffer, "%s.snp", argv[1] ) ;
fp = fopen( buffer, "r" ) ;
k = 0 ;
while ( fgets( buffer, sizeof( buffer ), fp ) )
{
Split( buffer, '\t', fields ) ;
if ( backboneName && strcmp( fields[2].c_str(), backboneName ) )
continue ;
snpNameToId[ fields[0] ] = k ;
struct _snpInfo info ;
info.type = fields[1][0] ;
if ( info.type == 'd' )
{
info.position = atoi( fields[3].c_str() ) ;
info.length = atoi( fields[4].c_str() ) ;
}
else if ( info.type == 'i' )
{
info.position = atoi( fields[3].c_str() ) ;
info.length = strlen( fields[4].c_str() ) ;
}
else
{
info.position = atoi( fields[3].c_str() ) ; // notice that the snp file is 0-based index.
info.length = 1 ;
info.nucleotide = fields[4][0] ;
}
snpInfo.push_back( info ) ;
std::vector< int > tmpList ;
snpLink.push_back( tmpList ) ;
for ( int p = 0 ; p < info.length ; ++p )
{
if ( info.type != 'i' || p == 0 )
{
if ( positionToSnp.find( info.position + p ) == positionToSnp.end() )
{
positionToSnp[ info.position + p] = tmpList ;
}
positionToSnp[ info.position + p].push_back( k ) ;
}
}
++k ;
}
fclose( fp ) ;
// Read in the link file. Determine the id of alleles and the association
// of alleles and snps.
// TODO: obtain the length of each allele and take the length into account in the statistical model
// Add the id for the backbound
int backboneLength = 0 ;
sprintf( buffer, "%s_backbone.fa", argv[1] ) ;
fp = fopen( buffer, "r" ) ;
/*for ( i = 1 ; buffer[i] && buffer[i] != ' ' && buffer[i] != '\n' ; ++i )
;
buffer[i] = '\0' ;
std::string backboneName( buffer + 1 ) ;
alleleNameToId[ backboneName ] = 0 ;
alleleIdToName.push_back( backboneName ) ;*/
bool start = false ;
while ( fgets( buffer, sizeof( buffer ), fp ) )
{
if ( buffer[0] == '>' )
{
for ( i = 1 ; buffer[i] && buffer[i] != ' ' && buffer[i] != '\n' ; ++i )
;
buffer[i] = '\0' ;
if ( !strcmp( backboneName, buffer + 1 ) )
{
start = true ;
}
else if ( start )
break ;
}
if ( start && buffer[0] != '>' )
{
int len = strlen( buffer ) ;
if ( buffer[len - 1 ] == '\n' )
backboneLength += len - 1 ;
else
backboneLength += len ;
}
}
fclose( fp ) ;
/*k = 0 ;
if ( k == 0 )
{
std::vector<int> tmpList ;
alleleSnpList.push_back( tmpList ) ;
alleleLength.push_back( backboneLength ) ;
}*/
// scanning the link file
sprintf( buffer, "%s.link", argv[1] ) ;
fp = fopen( buffer, "r" ) ;
k = 0 ;
while ( fgets( buffer, sizeof( buffer ), fp ) )
{
std::vector<std::string> tmpFields ;
Split( buffer, '\t', tmpFields ) ;
// skip the snps from other backbones
if ( snpNameToId.find( tmpFields[0] ) == snpNameToId.end() )
continue ;
int snpId = snpNameToId[ tmpFields[0] ] ;
Split( tmpFields[1].c_str(), ' ', fields ) ;
int size = fields.size() ;
for ( i = 0 ; i < size ; ++i )
{
if ( alleleNameToId.find( fields[i] ) == alleleNameToId.end() )
{
//printf( "%s %d\n", fields[i].c_str(), k ) ;
alleleNameToId[ fields[i] ] = k ;
alleleIdToName.push_back( fields[i] ) ;
std::vector<int> tmpList ;
alleleSnpList.push_back( tmpList ) ;
alleleLength.push_back( backboneLength ) ;
++k ;
}
int alleleId = alleleNameToId[ fields[i] ] ;
//if ( snpId == 118 )
// printf( "%s: %s %d\n", tmpFields[0].c_str(), fields[i].c_str(), alleleId ) ;
snpLink[ snpId ].push_back( alleleId ) ;
alleleSnpList[ alleleId ].push_back( snpId ) ;
if ( snpInfo[ snpId ].type == 'd' )
{
alleleLength[ alleleId ] -= snpInfo[ snpId ].length ;
}
else if ( snpInfo[ snpId ].type == 'i' )
{
alleleLength[ alleleId ] += snpInfo[ snpId ].length ;
}
}
}
fclose( fp ) ;
int numOfAllele = alleleIdToName.size() ;
int numOfSnps = snpLink.size() ;
snpAllele = new int* [numOfSnps] ;
for ( i = 0 ; i < numOfSnps ; ++i )
{
snpAllele[i] = new int[numOfAllele] ;
memset( snpAllele[i], 0, sizeof( int ) * numOfAllele ) ;
}
for ( i = 0 ; i < numOfSnps ; ++i )
{
int size = snpLink[i].size() ;
for ( j = 0 ; j < size ; ++j )
{
snpAllele[i][ snpLink[i][j] ] = 1 ;
}
}
// Compute the compatbility score for each alignment and the allele
// Get the number of alignment
int numOfAlignments = 0 ;
while ( alignments.Next() )
++numOfAlignments ;
alignments.Rewind() ;
compatibility = new struct _compatible*[numOfAlignments] ;
for ( i = 0 ; i < numOfAlignments ; ++i )
{
compatibility[i] = new struct _compatible[ numOfAllele ] ;
for ( j = 0 ; j < numOfAllele ; ++j )
{
compatibility[i][j].value = 0 ;//-log( (double)alleleLength[j] ) / log( 10.0 );
}
}
i = 0 ;
bool *snpHit = new bool[ numOfSnps ] ;
while ( alignments.Next() )
{
struct _pair coord = alignments.segments[0] ;
alignmentCoords.push_back( coord ) ;
memset( snpHit, 0, sizeof( bool ) * numOfSnps ) ;
Split( alignments.GetFieldZ( "Zs" ), ',', fields ) ;
int size = fields.size() ;
for ( k = 0 ; k < size ; ++k )
{
std::vector<std::string> subfields ;
Split( fields[k].c_str(), '|', subfields ) ;
int snpId = snpNameToId[ subfields[2] ] ;
snpHit[ snpId ] = true ;
}
for ( k = coord.a ; k <= coord.b ; ++k )
{
int size = positionToSnp[k].size() ;
for ( int l = 0 ; l < size ; ++l )
{
// if this SNP is hit. Then other allele don't have this snp
// will deduct its likelihood
//TODO: the deduction can be based on the quality score of the read
int tag = 0 ;
int snpId = positionToSnp[k][l] ;
if ( snpHit[ snpId ] )
{
tag = 0 ;
}
else
{
// if this SNP is not hit, then every allele containing this snp
// will deduct its likelihood
tag = 1 ;
}
for ( j = 0 ; j < numOfAllele ; ++j )
{
if ( snpAllele[ snpId ][j] == tag )
{
int v = -2 ;
//if ( snpInfo[ snpId ].type == 'd' || snpInfo[ snpId ].type == 'i' )
// v = -4 * snpInfo[ snpId ].length ;
if ( snpInfo[ snpId ].type == 'd' && snpInfo[ snpId ].position < k
&& k != coord.a )
{
// The penality has already been subtracted.
v = 0 ;
}
compatibility[i][j].value += v ;
/*if ( i == 8 && j == 78 )
{
printf( "Bad snp %d: %d %d\n", tag, k, positionToSnp[k][l] ) ;
}*/
}
}
}
}
++i ;
}
//printf( "%d %d\n", numOfAlignments, numOfAllele ) ;
// Now, let's consider every pair of alleles, and compute its log likelihood
double **logLikelihood ;
logLikelihood = new double *[ numOfAllele] ;
for ( j = 0 ; j < numOfAllele ; ++j )
{
logLikelihood[j] = new double[ numOfAllele ] ;
//memset( logLikelihood[j], 0, sizeof( double ) * numOfAllele ) ;
for ( k = 0 ; k < numOfAllele ; ++k )
logLikelihood[j][k] = 0 ;
}
int prevBin = -1 ;
double assignJBin = 0 ;
double assignKBin = 0 ;
for ( j = 0 ; j < numOfAllele ; ++j )
{
for ( k = j ; k < numOfAllele ; ++k )
{
double binAdjust = 0 ;
double averageRead = ( (double)numOfAlignments ) / (double)( alleleLength[j] + alleleLength[k] ) * binSize ;
for ( i = 0 ; i < numOfAlignments ; ++i )
{
double vj = compatibility[i][j].value ;
double vk = compatibility[i][k].value ;
double weightJ = 0, weightK = 0 ;
if ( vj == vk )
{
weightJ = weightK = 0.5 ;
}
else if ( vj == vk + 2 )
{
if ( vj == 0 )
{
weightJ = 1 ;
}
else
{
weightJ = 0.99 ;
weightK = 0.01 ;
}
}
else if ( vk == vj + 2 )
{
if ( vk == 0 )
{
weightK = 1 ;
}
else
{
weightJ = 0.01 ;
weightK = 0.99 ;
}
}
else
{
if ( vk > vj )
weightK = 1 ;
else
weightJ = 1 ;
}
double l = weightJ * compatibility[i][j].value + weightK * compatibility[i][k].value ;
if ( alignmentCoords[i].a / binSize != prevBin )
{
if ( prevBin != -1 &&
( assignJBin > averageRead + 4 * sqrt( averageRead )
|| assignKBin > averageRead + 4 * sqrt( averageRead ) ) )
{
//if ( j == 8 && k == 78 )
// printf( "%lf: %lf %lf %d %d\n", averageRead, assignJBin, assignKBin, alleleLength[j], alleleLength[k] ) ;
binAdjust -= 4 ;
}
prevBin = alignmentCoords[i].a / binSize ;
assignJBin = 0 ;
assignKBin = 0 ;
}
assignJBin += weightJ ;
assignKBin += weightK ;
/*if ( j == 8 && k == 78 && l < 0 )
{
printf( "Bad alignment %d (%s %s). %lf %lf: %lf\n", i,
alleleIdToName[j].c_str(), alleleIdToName[k].c_str(),
compatibility[i][j].value, compatibility[i][k].value, l ) ;
}*/
logLikelihood[j][k] += l ;
}
logLikelihood[j][k] += ( -log( (double)alleleLength[j] ) / log(10.0 ) -
log( (double)alleleLength[k] ) / log(10.0) ) ;
logLikelihood[j][k] += binAdjust ;
}
}
// Find the result
double max ;
int maxj = -1 ;
int maxk = -1 ;
std::vector< struct _result > results ;
for ( j = 0 ; j < numOfAllele ; ++j )
{
for ( k = j ; k < numOfAllele ; ++k )
{
if ( maxj == -1 || logLikelihood[j][k] > max )
{
maxj = j ;
maxk = k ;
max = logLikelihood[j][k] ;
}
struct _result r ;
r.a = j ;
r.b = k ;
r.logLikelihood = logLikelihood[j][k] ;
results.push_back( r ) ;
}
}
//printf( "%s %s %lf\n", alleleIdToName[ maxj ].c_str(), alleleIdToName[ maxk ].c_str(), max) ;
//printf( "%lf\n", logLikelihood[124][128] ) ;
if ( results.size() == 0 )
{
printf( "-1 -1 -1\n" ) ;
exit( 1 ) ;
}
std::sort( results.begin(), results.end(), CompResult ) ;
i = 0 ;
printf( "%s %s %lf\n", alleleIdToName[ results[i].a ].c_str(), alleleIdToName[ results[i].b ].c_str(),
results[i].logLikelihood ) ;
k = results.size() ;
for ( i = 1 ; i < k ; ++i )
{
if ( results[i].logLikelihood != results[0].logLikelihood )
break ;
printf( "%s %s %lf\n", alleleIdToName[ results[i].a ].c_str(), alleleIdToName[ results[i].b ].c_str(),
results[i].logLikelihood ) ;
}
return 0 ;
}