hisat-3n/splice_site.cpp

851 lines
33 KiB
C++
Raw Permalink Normal View History

2025-01-18 13:09:52 +00:00
/*
* Copyright 2013, Daehwan Kim <infphilo@gmail.com>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#include "edit.h"
#include "splice_site.h"
#include "aligner_report.h"
#include "aligner_result.h"
#if defined(NEW_PROB_MODEL)
#include "splice_site_mem.h"
#else
float donor_prob[4][donor_len] = {
{0.340f, 0.604f, 0.092f, 0.001f, 0.001f, 0.526f, 0.713f, 0.071f, 0.160f},
{0.363f, 0.129f, 0.033f, 0.001f, 0.001f, 0.028f, 0.076f, 0.055f, 0.165f},
{0.183f, 0.125f, 0.803f, 1.000f, 0.001f, 0.419f, 0.118f, 0.814f, 0.209f},
{0.114f, 0.142f, 0.073f, 0.001f, 1.000f, 0.025f, 0.093f, 0.059f, 0.462f}
};
float acceptor_prob[4][acceptor_len] = {
{0.090f, 0.084f, 0.075f, 0.068f, 0.076f, 0.080f, 0.097f, 0.092f, 0.076f, 0.078f, 0.237f, 0.042f, 1.000f, 0.001f, 0.239f},
{0.310f, 0.310f, 0.307f, 0.293f, 0.326f, 0.330f, 0.373f, 0.385f, 0.410f, 0.352f, 0.309f, 0.708f, 0.001f, 0.001f, 0.138f},
{0.125f, 0.115f, 0.106f, 0.104f, 0.110f, 0.113f, 0.113f, 0.085f, 0.066f, 0.064f, 0.212f, 0.003f, 0.001f, 1.000f, 0.520f},
{0.463f, 0.440f, 0.470f, 0.494f, 0.471f, 0.463f, 0.408f, 0.429f, 0.445f, 0.504f, 0.240f, 0.246f, 0.001f, 0.001f, 0.104f}
};
float donor_prob_sum[1 << (donor_len << 1)];
float acceptor_prob_sum1[1 << (acceptor_len1 << 1)];
float acceptor_prob_sum2[1 << (acceptor_len2 << 1)];
#endif
void init_junction_prob()
{
#if !defined(NEW_PROB_MODEL)
for(size_t i = 0; i < donor_len; i++) {
ASSERT_ONLY(float sum = 0.0f);
for(size_t j = 0; j < 4; j++) {
float prob = donor_prob[j][i];
assert_gt(prob, 0.0f);
ASSERT_ONLY(sum += prob);
donor_prob[j][i] = log(prob / background_prob[j]);
}
assert_range(0.9f, 1.05f, sum);
}
for(size_t i = 0; i < acceptor_len; i++) {
ASSERT_ONLY(float sum = 0.0f);
for(size_t j = 0; j < 4; j++) {
float prob = acceptor_prob[j][i];
assert_gt(prob, 0.0f);
ASSERT_ONLY(sum += prob);
acceptor_prob[j][i] = log(prob / background_prob[j]);
}
assert_range(0.9f, 1.05f, sum);
}
const size_t donor_elms = 1 << (donor_len << 1);
for(size_t i = 0; i < donor_elms; i++) {
float sum = 0.0f;
for(size_t j = 0; j < donor_len; j++) {
int base = (i >> (j << 1)) & 0x3;
sum += donor_prob[base][donor_len - j - 1];
}
donor_prob_sum[i] = exp(-sum);
}
const size_t acceptor_elms1 = 1 << (acceptor_len1 << 1);
for(size_t i = 0; i < acceptor_elms1; i++) {
float sum = 0.0f;
for(size_t j = 0; j < acceptor_len1; j++) {
int base = (i >> (j << 1)) & 0x3;
sum += acceptor_prob[base][acceptor_len1 - j - 1];
}
acceptor_prob_sum1[i] = exp(-sum);
}
const size_t acceptor_elms2 = 1 << (acceptor_len2 << 1);
for(size_t i = 0; i < acceptor_elms2; i++) {
float sum = 0.0f;
for(size_t j = 0; j < acceptor_len2; j++) {
int base = (i >> (j << 1)) & 0x3;
sum += acceptor_prob[base][acceptor_len - j - 1];
}
acceptor_prob_sum2[i] = exp(-sum);
}
#endif
}
ostream& operator<<(ostream& out, const SpliceSite& s)
{
out << s.ref() << "\t"
<< s.left() << "\t"
<< s.right() << "\t";
if(s.splDir() == SPL_FW || s.splDir() == SPL_SEMI_FW) {
out << "+";
} else if(s.splDir() == SPL_RC || s.splDir() == SPL_SEMI_RC) {
out << "-";
} else {
out << ".";
}
out << endl;
return out;
}
SpliceSiteDB::SpliceSiteDB(
const BitPairReference& refs,
const EList<string>& refnames,
bool threadSafe,
bool write,
bool read) :
_numRefs(refs.numRefs()),
_write(write),
_read(read),
_threadSafe(threadSafe),
_empty(true)
{
for(size_t r = 0; r < refnames.size(); r++) {
const string& refname = refnames[r];
_refnames.expand();
size_t i = 0;
for(; i < refname.size(); i++) {
if(isspace(refname[i])) {
break;
}
}
_refnames.back() = refname.substr(0, i);
}
assert_gt(_numRefs, 0);
assert_eq(_numRefs, _refnames.size());
for(uint64_t i = 0; i < _numRefs; i++) {
_fwIndex.push_back(new RedBlack<SpliceSitePos, uint32_t>(16 << 10, CA_CAT));
_bwIndex.push_back(new RedBlack<SpliceSitePos, uint32_t>(16 << 10, CA_CAT));
_pool.expand();
_spliceSites.expand();
_mutex.push_back(MUTEX_T());
}
donorstr.resize(donor_exonic_len + donor_intronic_len);
acceptorstr.resize(acceptor_intronic_len + acceptor_exonic_len);
}
SpliceSiteDB::~SpliceSiteDB() {
assert_eq(_fwIndex.size(), _bwIndex.size());
assert_eq(_fwIndex.size(), _pool.size());
for(uint64_t i = 0; i < _numRefs; i++) {
delete _fwIndex[i];
delete _bwIndex[i];
EList<Pool*>& pool = _pool[i];
for(size_t j = 0; j < pool.size(); j++) {
delete pool[j];
}
}
}
size_t SpliceSiteDB::size(uint64_t ref) const {
if(!_read) return 0;
assert_lt(ref, _numRefs);
assert_lt(ref, _mutex.size());
assert_lt(ref, _fwIndex.size());
assert_eq(_fwIndex.size(), _bwIndex.size());
ThreadSafe t(const_cast<MUTEX_T*>(&_mutex[ref]), _threadSafe && _write);
return _fwIndex.size();
}
bool SpliceSiteDB::empty(uint64_t ref) const {
return size(ref) == 0;
}
bool SpliceSiteDB::addSpliceSite(
const Read& rd,
const AlnRes& rs,
uint32_t minAnchorLen)
{
if(!_write) return false;
if(rs.trimmed5p(true) + rs.trimmed3p(true) > 0) return false;
_empty = false;
Coord coord = rs.refcoord();
uint64_t ref = coord.ref();
assert_lt(ref, _numRefs);
const EList<Edit>& edits = rs.ned();
if(!coord.orient()) {
Edit::invertPoss(const_cast<EList<Edit>&>(edits), rd.length(), false);
}
// daehwan - for debugging purposes
uint32_t editdist = 0;
for(size_t i = 0; i < edits.size(); i++) {
const Edit& edit = edits[i];
if(edit.isGap() || edit.isMismatch()) editdist++;
}
SpliceSitePos ssp;
uint32_t refoff = (uint32_t)coord.off();
uint32_t leftAnchorLen = 0, rightAnchorLen = 0;
size_t eidx = 0;
size_t last_eidx = 0;
uint32_t mm = 0;
for(size_t i = 0; i < rd.length(); i++, refoff++) {
while(eidx < edits.size() && edits[eidx].pos == i) {
if(edits[eidx].isReadGap()) {
refoff++;
} else if(edits[eidx].isRefGap()) {
assert_gt(refoff, 0);
refoff--;
}
if(edits[eidx].isGap() || edits[eidx].isMismatch()) mm++;
if(edits[eidx].isSpliced()) {
assert_gt(refoff, 0);
if(ssp.inited()) {
assert(edits[last_eidx].isSpliced());
assert_lt(edits[last_eidx].pos, edits[eidx].pos);
rightAnchorLen = edits[eidx].pos - edits[last_eidx].pos;
uint32_t minLeftAnchorLen = minAnchorLen + mm * 2 + (edits[eidx].splDir == SPL_UNKNOWN ? 6 : 0);
uint32_t mm2 = 0;
for(size_t j = eidx + 1; j < edits.size(); j++) {
if(edits[j].isGap() || edits[j].isMismatch()) mm2++;
}
uint32_t minRightAnchorLen = minAnchorLen + mm2 * 2 + (edits[eidx].splDir == SPL_UNKNOWN ? 6 : 0);
if(leftAnchorLen >= minLeftAnchorLen && rightAnchorLen >= minRightAnchorLen) {
bool added = false;
assert_lt(ref, _mutex.size());
ThreadSafe t(&_mutex[ref], _threadSafe && _write);
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
Node *cur = _fwIndex[ref]->add(pool(ref), ssp, &added);
if(added) {
assert_lt(ref, _spliceSites.size());
_spliceSites[ref].expand();
_spliceSites[ref].back().init(ssp.ref(), ssp.left(), ssp.right(), ssp.splDir());
_spliceSites[ref].back()._readid = rd.rdid;
_spliceSites[ref].back()._leftext = leftAnchorLen;
_spliceSites[ref].back()._rightext = rightAnchorLen;
_spliceSites[ref].back()._editdist = editdist;
_spliceSites[ref].back()._numreads = 1;
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
SpliceSitePos rssp(ssp.ref(), ssp.right(), ssp.left(), ssp.splDir());
assert_lt(ref, _bwIndex.size());
assert(_bwIndex[ref] != NULL);
cur = _bwIndex[ref]->add(pool(ref), rssp, &added);
assert(added);
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
assert_eq(_fwIndex[ref]->size(), _bwIndex[ref]->size());
} else {
assert(cur != NULL);
assert_lt(ref, _spliceSites.size());
assert_lt(cur->payload, _spliceSites[ref].size());
if(leftAnchorLen > _spliceSites[ref][cur->payload]._leftext) _spliceSites[ref][cur->payload]._leftext = leftAnchorLen;
if(rightAnchorLen > _spliceSites[ref][cur->payload]._rightext) _spliceSites[ref][cur->payload]._rightext = rightAnchorLen;
if(editdist < _spliceSites[ref][cur->payload]._editdist) _spliceSites[ref][cur->payload]._editdist = editdist;
_spliceSites[ref][cur->payload]._numreads += 1;
if(rd.rdid < _spliceSites[ref][cur->payload]._readid) {
_spliceSites[ref][cur->payload]._readid = rd.rdid;
}
}
}
leftAnchorLen = rightAnchorLen;
rightAnchorLen = 0;
} else {
leftAnchorLen = edits[eidx].pos;
}
ssp.init((uint32_t)coord.ref(), refoff - 1, refoff + edits[eidx].splLen, edits[eidx].splDir);
refoff += edits[eidx].splLen;
last_eidx = eidx;
}
eidx++;
}
}
if(ssp.inited()) {
assert(edits[last_eidx].isSpliced());
assert_lt(edits[last_eidx].pos, rd.length());
rightAnchorLen = (uint32_t)(rd.length() - edits[last_eidx].pos);
uint32_t minLeftAnchorLen = minAnchorLen + mm * 2 + (edits[last_eidx].splDir == SPL_UNKNOWN ? 6 : 0);
uint32_t mm2 = 0;
for(size_t j = last_eidx + 1; j < edits.size(); j++) {
if(edits[j].isGap() || edits[j].isMismatch()) mm2++;
}
uint32_t minRightAnchorLen = minAnchorLen + mm2 * 2 + (edits[last_eidx].splDir == SPL_UNKNOWN ? 6 : 0);
if(leftAnchorLen >= minLeftAnchorLen && rightAnchorLen >= minRightAnchorLen) {
bool added = false;
assert_lt(ref, _mutex.size());
ThreadSafe t(&_mutex[ref], _threadSafe && _write);
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
Node *cur = _fwIndex[ref]->add(pool(ref), ssp, &added);
if(added) {
assert_lt(ref, _spliceSites.size());
_spliceSites[ref].expand();
_spliceSites[ref].back().init(ssp.ref(), ssp.left(), ssp.right(), ssp.splDir());
_spliceSites[ref].back()._readid = rd.rdid;
_spliceSites[ref].back()._leftext = leftAnchorLen;
_spliceSites[ref].back()._rightext = rightAnchorLen;
_spliceSites[ref].back()._editdist = editdist;
_spliceSites[ref].back()._numreads = 1;
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
SpliceSitePos rssp(ssp.ref(), ssp.right(), ssp.left(), ssp.splDir());
assert_lt(ref, _bwIndex.size());
assert(_bwIndex[ref] != NULL);
cur = _bwIndex[ref]->add(pool(ref), rssp, &added);
assert(added);
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
assert_eq(_fwIndex[ref]->size(), _bwIndex[ref]->size());
} else {
assert(cur != NULL);
assert_lt(ref, _spliceSites.size());
assert_lt(cur->payload, _spliceSites[ref].size());
if(leftAnchorLen > _spliceSites[ref][cur->payload]._leftext) _spliceSites[ref][cur->payload]._leftext = leftAnchorLen;
if(rightAnchorLen > _spliceSites[ref][cur->payload]._rightext) _spliceSites[ref][cur->payload]._rightext = rightAnchorLen;
if(editdist < _spliceSites[ref][cur->payload]._editdist) _spliceSites[ref][cur->payload]._editdist = editdist;
_spliceSites[ref][cur->payload]._numreads += 1;
if(rd.rdid < _spliceSites[ref][cur->payload]._readid) {
_spliceSites[ref][cur->payload]._readid = rd.rdid;
}
}
}
}
if(!coord.orient()) {
Edit::invertPoss(const_cast<EList<Edit>&>(edits), rd.length(), false);
}
return true;
}
bool SpliceSiteDB::getSpliceSite(SpliceSite& ss) const
{
if(!_read) return false;
uint64_t ref = ss.ref();
assert_lt(ref, _numRefs);
assert_lt(ref, _mutex.size());
ThreadSafe t(const_cast<MUTEX_T*>(&_mutex[ref]), _threadSafe && _write);
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
const Node *cur = _fwIndex[ref]->lookup(ss);
if(cur == NULL) return false;
assert(cur != NULL);
assert_lt(ref, _spliceSites.size());
ss = _spliceSites[ref][cur->payload];
return true;
}
void SpliceSiteDB::getLeftSpliceSites(uint32_t ref, uint32_t left, uint32_t range, EList<SpliceSite>& spliceSites) const
{
if(!_read) return;
assert_lt(ref, _numRefs);
assert_lt(ref, _mutex.size());
ThreadSafe t(const_cast<MUTEX_T*>(&_mutex[ref]), _threadSafe && _write);
assert_gt(range, 0);
assert_geq(left + 1, range);
assert_lt(ref, _bwIndex.size());
assert(_bwIndex[ref] != NULL);
const Node *cur = _bwIndex[ref]->root();
if(cur != NULL) getSpliceSites_recur(cur, left + 1 - range, left, spliceSites);
}
void SpliceSiteDB::getRightSpliceSites(uint32_t ref, uint32_t right, uint32_t range, EList<SpliceSite>& spliceSites) const
{
if(!_read) return;
assert_lt(ref, _numRefs);
assert_lt(ref, _mutex.size());
ThreadSafe t(const_cast<MUTEX_T*>(&_mutex[ref]), _threadSafe && _write);
assert_gt(range, 0);
assert_gt(right + range, range);
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
const Node *cur = _fwIndex[ref]->root();
if(cur != NULL) getSpliceSites_recur(cur, right, right + range - 1, spliceSites);
}
void SpliceSiteDB::getSpliceSites_recur(
const RedBlackNode<SpliceSitePos, uint32_t> *node,
uint32_t left,
uint32_t right,
EList<SpliceSite>& spliceSites) const
{
assert(node != NULL);
if(node->key.left() >= left && node->left != NULL) {
getSpliceSites_recur(
node->left,
left,
right,
spliceSites);
}
if(node->key.left() >= left && node->key.left() <= right) {
uint32_t ref = node->key.ref();
assert_lt(ref, _spliceSites.size());
assert_lt(node->payload, _spliceSites[ref].size());
ASSERT_ONLY(const SpliceSite& ss = _spliceSites[ref][node->payload]);
assert_eq(ss.ref(), node->key.ref());
assert(ss.left() == node->key.left() ||
ss.right() == node->key.left());
spliceSites.push_back(_spliceSites[ref][node->payload]);
}
if(node->key.left() <= right && node->right != NULL) {
getSpliceSites_recur(
node->right,
left,
right,
spliceSites);
}
}
bool SpliceSiteDB::hasSpliceSites(
uint32_t ref,
uint32_t left1,
uint32_t right1,
uint32_t left2,
uint32_t right2,
bool includeNovel) const
{
if(!_read) return false;
assert_lt(ref, _numRefs);
assert_lt(ref, _mutex.size());
ThreadSafe t(const_cast<MUTEX_T*>(&_mutex[ref]), _threadSafe && _write);
if(left1 < right1) {
assert_lt(ref, _bwIndex.size());
assert(_bwIndex[ref] != NULL);
const Node *cur = _bwIndex[ref]->root();
if(cur != NULL) {
if(hasSpliceSites_recur(cur, left1, right1, includeNovel))
return true;
}
}
if(left2 < right2) {
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
const Node *cur = _fwIndex[ref]->root();
if(cur != NULL) {
return hasSpliceSites_recur(cur, left2, right2, includeNovel);
}
}
return false;
}
bool SpliceSiteDB::hasSpliceSites_recur(
const RedBlackNode<SpliceSitePos, uint32_t> *node,
uint32_t left,
uint32_t right,
bool includeNovel) const
{
assert(node != NULL);
if(node->key.left() >= left && node->key.left() <= right) {
uint32_t ref = node->key.ref();
assert_lt(ref, _spliceSites.size());
assert_lt(node->payload, _spliceSites[ref].size());
const SpliceSite& ss = _spliceSites[ref][node->payload];
if(includeNovel || ss._known)
return true;
}
if(node->key.left() >= left && node->left != NULL) {
if(hasSpliceSites_recur(
node->left,
left,
right,
includeNovel))
return true;
}
if(node->key.left() <= right && node->right != NULL) {
if(hasSpliceSites_recur(
node->right,
left,
right,
includeNovel))
return true;
}
return false;
}
bool SpliceSiteDB::insideExon(
uint32_t ref,
uint32_t left,
uint32_t right) const
{
if(_exons.empty()) return false;
assert_lt(ref, _numRefs);
assert_lt(left, right);
Exon e(ref, left + 1, 0, true);
size_t i = _exons.bsearchLoBound(e);
for(; i > 0; i--) {
const Exon& e = _exons[i-1];
if(e.right() < left) break;
if(e.left() <= left && right <= e.right())
return true;
}
return false;
}
void calculate_splicesite_read_dist_impl(const RedBlackNode<SpliceSitePos, uint32_t> *node,
const EList<SpliceSite> &spliceSites,
EList<int64_t>& splicesite_read_dist) {
if(node == NULL) return;
calculate_splicesite_read_dist_impl(node->left, spliceSites, splicesite_read_dist);
assert_lt(node->payload, spliceSites.size());
const SpliceSite& ss = spliceSites[node->payload];
if(ss.numreads() < splicesite_read_dist.size())
splicesite_read_dist[ss.numreads()] += 1;
else
splicesite_read_dist.back() += 1;
calculate_splicesite_read_dist_impl(node->right, spliceSites, splicesite_read_dist);
}
uint32_t calculate_splicesite_read_dist(const EList<RedBlack<SpliceSitePos, uint32_t>* >& fwIndex,
const ELList<SpliceSite> &spliceSites,
EList<int64_t>& splicesite_read_dist) {
for(size_t i = 0; i < fwIndex.size(); i++) {
assert(fwIndex[i] != NULL);
const RedBlackNode<SpliceSitePos, uint32_t> *root = fwIndex[i]->root();
assert_lt(i, spliceSites.size());
if(root != NULL) calculate_splicesite_read_dist_impl(root, spliceSites[i], splicesite_read_dist);
}
for(size_t i = 1; i < splicesite_read_dist.size(); i++) {
splicesite_read_dist[i] += splicesite_read_dist[i-1];
}
for(size_t i = 0; i < splicesite_read_dist.size(); i++) {
float cmf_i = float(splicesite_read_dist[i]) / splicesite_read_dist.back();
if(cmf_i > 0.7)
return (uint32_t)i;
}
return 0;
}
void SpliceSiteDB::print(ofstream& out)
{
EList<int64_t> splicesite_read_dist;
for(size_t i = 0; i < 100; i++) {
splicesite_read_dist.push_back(0);
}
uint32_t numreads_cutoff = calculate_splicesite_read_dist(_fwIndex, _spliceSites, splicesite_read_dist);
size_t numsplicesites = 0;
for(size_t i = 0; i < _spliceSites.size(); i++) {
numsplicesites += _spliceSites[i].size();
}
uint32_t numreads_cutoff2 = (uint32_t)(numsplicesites / 100000);
EList<SpliceSite> ss_list;
for(size_t i = 0; i < _fwIndex.size(); i++) {
assert(_fwIndex[i] != NULL);
const Node *root = _fwIndex[i]->root();
if(root != NULL) print_recur(root, out, numreads_cutoff, numreads_cutoff2, ss_list);
}
print_impl(out, ss_list);
}
void SpliceSiteDB::print_recur(
const RedBlackNode<SpliceSitePos, uint32_t> *node,
ofstream& out,
const uint32_t numreads_cutoff,
const uint32_t numreads_cutoff2,
EList<SpliceSite>& ss_list)
{
if(node == NULL) return;
print_recur(node->left, out, numreads_cutoff, numreads_cutoff2, ss_list);
const SpliceSitePos& ssp = node->key;
assert_lt(ssp.ref(), _spliceSites.size());
assert_lt(node->payload, _spliceSites[ssp.ref()].size());
const SpliceSite& ss = _spliceSites[ssp.ref()][node->payload];
if(ss.numreads() >= numreads_cutoff ||
(ss.editdist() == 0 && ss.numreads() >= numreads_cutoff2)) print_impl(out, ss_list, &ss);
print_recur(node->right, out, numreads_cutoff, numreads_cutoff2, ss_list);
}
void SpliceSiteDB::print_impl(
ofstream& out,
EList<SpliceSite>& ss_list,
const SpliceSite* ss)
{
size_t i = 0;
while(i < ss_list.size()) {
const SpliceSite& tmp_ss = ss_list[i];
bool do_print = true;
if(ss != NULL) {
if(tmp_ss.ref() == ss->ref()) {
assert_leq(tmp_ss.left(), ss->left());
if(ss->left() < tmp_ss.left() + 10) {
do_print = false;
if(abs(((int)ss->left() - (int)tmp_ss.left()) - ((int)ss->right() - (int)tmp_ss.right())) <= 10) {
if(tmp_ss.numreads() < ss->numreads()) {
ss_list.erase(i);
ss_list.push_back(*ss);
}
return;
}
}
}
}
if(!do_print) {
i++;
continue;
}
assert_lt(tmp_ss.ref(), _refnames.size());
out << _refnames[tmp_ss.ref()] << "\t"
<< tmp_ss.left() << "\t"
<< tmp_ss.right() << "\t";
if(tmp_ss.splDir() == SPL_FW || tmp_ss.splDir() == SPL_SEMI_FW) {
out << "+";
} else if(tmp_ss.splDir() == SPL_RC || tmp_ss.splDir() == SPL_SEMI_RC) {
out << "-";
} else {
out << ".";
}
out << endl;
ss_list.erase(i);
}
if(ss != NULL) ss_list.push_back(*ss);
}
void SpliceSiteDB::read(const GFM<TIndexOffU>& gfm, const EList<ALT<TIndexOffU> >& alts)
{
EList<Exon> exons;
_empty = false;
assert_eq(_numRefs, _refnames.size());
for(size_t i = 0; i < alts.size(); i++) {
const ALT<TIndexOffU>& alt = alts[i];
if(!alt.splicesite() && !alt.exon()) continue;
if(alt.left > alt.right) continue;
TIndexOffU ref = 0, left = 0, tlen = 0;
char fw = alt.fw;
bool straddled2 = false;
gfm.joinedToTextOff(
1,
alt.left,
ref,
left,
tlen,
true, // reject straddlers?
straddled2); // straddled?
assert_lt(ref, _spliceSites.size());
TIndexOffU right = left + (alt.right - alt.left);
if(alt.splicesite()) {
left -= 1; right += 1;
_spliceSites[ref].expand();
_spliceSites[ref].back().init(ref,
left,
right,
fw ? SPL_FW : SPL_RC,
alt.exon(),
true, // from file?
true); // known splice site?
assert_gt(_spliceSites[ref].size(), 0);
bool added = false;
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
Node *cur = _fwIndex[ref]->add(pool(ref), _spliceSites[ref].back(), &added);
if(!added) {
_spliceSites[ref].pop_back();
continue;
}
assert(added);
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
added = false;
SpliceSitePos rssp(ref,
right,
left,
fw ? SPL_FW : SPL_RC);
assert_lt(ref, _bwIndex.size());
assert(_bwIndex[ref] != NULL);
cur = _bwIndex[ref]->add(pool(ref), rssp, &added);
assert(added);
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
} else {
assert(alt.exon());
// Given some relaxation
if(left >= 10) left -= 10;
else left = 0;
if(right + 10 < tlen) right += 10;
else right = tlen - 1;
exons.expand();
exons.back().init(ref, left, right, fw == '+' ? SPL_FW : SPL_RC);
}
}
if(exons.size() > 0) {
_exons.resizeExact(exons.size()); _exons.clear();
_exons.push_back_array(exons.begin(), exons.size());
_exons.sort();
}
}
void SpliceSiteDB::read(ifstream& in, bool known)
{
_empty = false;
assert_eq(_numRefs, _refnames.size());
while(!in.eof()) {
string refname;
uint32_t left = 0, right = 0;
char fw = 0;
in >> refname >> left >> right >> fw;
uint32_t ref = 0;
for(; ref < _refnames.size(); ref++) {
if(_refnames[ref] == refname) break;
}
if(ref >= _numRefs) continue;
assert_lt(ref, _spliceSites.size());
_spliceSites[ref].expand();
_spliceSites[ref].back().init(ref,
left,
right,
fw == '+' ? SPL_FW : SPL_RC,
false, // exon?
true, // from file?
known); // known splice site?
assert_gt(_spliceSites[ref].size(), 0);
bool added = false;
assert_lt(ref, _fwIndex.size());
assert(_fwIndex[ref] != NULL);
Node *cur = _fwIndex[ref]->add(pool(ref), _spliceSites[ref].back(), &added);
if(!added) {
_spliceSites[ref].pop_back();
continue;
}
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
added = false;
SpliceSitePos rssp(ref,
right,
left,
fw == '+' ? SPL_FW : SPL_RC);
assert_lt(ref, _bwIndex.size());
assert(_bwIndex[ref] != NULL);
cur = _bwIndex[ref]->add(pool(ref), rssp, &added);
assert(added);
assert(cur != NULL);
cur->payload = (uint32_t)_spliceSites[ref].size() - 1;
}
}
Pool& SpliceSiteDB::pool(uint64_t ref) {
assert_lt(ref, _numRefs);
assert_lt(ref, _pool.size());
EList<Pool*>& pool = _pool[ref];
if(pool.size() <= 0 || pool.back()->full()) {
pool.push_back(new Pool(1 << 20 /* 1MB */, 16 << 10 /* 16KB */, CA_CAT));
}
assert(pool.back() != NULL);
return *pool.back();
}
float SpliceSiteDB::probscore(
int64_t donor_seq,
int64_t acceptor_seq)
{
float probscore = 0.0f;
#if defined(NEW_PROB_MODEL)
float donor_probscore = 0.0f;
assert_leq(donor_seq, 0x3ffff);
int64_t donor_exonic_seq = (donor_seq >> 4) & (~0xff);
int64_t donor_intronic_seq = donor_seq & 0xff;
int64_t donor_rest_seq = donor_exonic_seq | donor_intronic_seq;
int donor_seq3 = (donor_seq >> 10) & 0x3;
int donor_seq4 = (donor_seq >> 8) & 0x3;
donor_probscore = donor_cons1[donor_seq3] * donor_cons2[donor_seq4] / (background_bp_prob[donor_seq3] * background_bp_prob[donor_seq4]) * donor_me2x5[donor_rest_seq];
float acceptor_probscore = 0.0f;
assert_leq(acceptor_seq, 0x3fffffffffff);
int64_t acceptor_intronic_seq = (acceptor_seq >> 4) & (~0x3f);
int64_t acceptor_exonic_seq = acceptor_seq & 0x3f;
int64_t acceptor_rest_seq = acceptor_intronic_seq | acceptor_exonic_seq;
int acceptor_seq18 = (acceptor_seq >> 8) & 0x3;
int acceptor_seq19 = (acceptor_seq >> 6) & 0x3;
acceptor_probscore = acceptor_cons1[acceptor_seq18] * acceptor_cons2[acceptor_seq19] / (background_bp_prob[acceptor_seq18] * background_bp_prob[acceptor_seq19]);
int64_t acceptor_seq1 = acceptor_rest_seq >> 28 & 0x3fff; // [0, 7]
acceptor_probscore *= acceptor_me2x3acc1[acceptor_seq1];
int64_t acceptor_seq2 = (acceptor_rest_seq >> 14) & 0x3fff; // [7, 7]
acceptor_probscore *= acceptor_me2x3acc2[acceptor_seq2];
int64_t acceptor_seq3 = acceptor_rest_seq & 0x3fff; // [14, 7]
acceptor_probscore *= acceptor_me2x3acc3[acceptor_seq3];
int64_t acceptor_seq4 = (acceptor_rest_seq >> 20) & 0x3fff; // [4, 7]
acceptor_probscore *= acceptor_me2x3acc4[acceptor_seq4];
int64_t acceptor_seq5 = (acceptor_rest_seq >> 6) & 0x3fff; // [11, 7]
acceptor_probscore *= acceptor_me2x3acc5[acceptor_seq5];
int64_t acceptor_seq6 = acceptor_seq1 & 0x3f; // [4, 3]
acceptor_probscore /= acceptor_me2x3acc6[acceptor_seq6];
int64_t acceptor_seq7 = acceptor_seq4 & 0xff; // [7, 4]
acceptor_probscore /= acceptor_me2x3acc7[acceptor_seq7];
int64_t acceptor_seq8 = acceptor_seq2 & 0x3f; // [11, 3]
acceptor_probscore /= acceptor_me2x3acc8[acceptor_seq8];
int64_t acceptor_seq9 = acceptor_seq5 & 0xff; // [14, 4]
acceptor_probscore /= acceptor_me2x3acc9[acceptor_seq9];
donor_probscore /= (1.0f + donor_probscore);
acceptor_probscore /= (1.0f + acceptor_probscore);
probscore = (donor_probscore + acceptor_probscore) / 2.0;
#else
assert_lt(donor_seq, (int)(1 << (donor_len << 1)));
probscore = donor_prob_sum[donor_seq];
int acceptor_seq1 = (int)(acceptor_seq >> (acceptor_len2 << 1));
assert_lt(acceptor_seq1, (int)(1 << (acceptor_len1 << 1)));
probscore *= acceptor_prob_sum1[acceptor_seq1];
int acceptor_seq2 = acceptor_seq % (1 << (acceptor_len2 << 1));
probscore *= acceptor_prob_sum2[acceptor_seq2];
probscore = 1.0 / (1.0 + probscore);
#endif
return probscore;
}