/* -*- mode: c++; tab-width: 2; indent-tabs-mode: nil; -*- Copyright (c) 2010-2012 Marcus Geelnard This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include #include "tinythread.h" #if defined(_TTHREAD_POSIX_) #include #include #elif defined(_TTHREAD_WIN32_) #include #endif namespace tthread { //------------------------------------------------------------------------------ // condition_variable //------------------------------------------------------------------------------ // NOTE 1: The Win32 implementation of the condition_variable class is based on // the corresponding implementation in GLFW, which in turn is based on a // description by Douglas C. Schmidt and Irfan Pyarali: // http://www.cs.wustl.edu/~schmidt/win32-cv-1.html // // NOTE 2: Windows Vista actually has native support for condition variables // (InitializeConditionVariable, WakeConditionVariable, etc), but we want to // be portable with pre-Vista Windows versions, so TinyThread++ does not use // Vista condition variables. //------------------------------------------------------------------------------ #if defined(_TTHREAD_WIN32_) #define _CONDITION_EVENT_ONE 0 #define _CONDITION_EVENT_ALL 1 #endif #if defined(_TTHREAD_WIN32_) condition_variable::condition_variable() : mWaitersCount(0) { mEvents[_CONDITION_EVENT_ONE] = CreateEvent(NULL, FALSE, FALSE, NULL); mEvents[_CONDITION_EVENT_ALL] = CreateEvent(NULL, TRUE, FALSE, NULL); InitializeCriticalSection(&mWaitersCountLock); } #endif #if defined(_TTHREAD_WIN32_) condition_variable::~condition_variable() { CloseHandle(mEvents[_CONDITION_EVENT_ONE]); CloseHandle(mEvents[_CONDITION_EVENT_ALL]); DeleteCriticalSection(&mWaitersCountLock); } #endif #if defined(_TTHREAD_WIN32_) void condition_variable::_wait() { // Wait for either event to become signaled due to notify_one() or // notify_all() being called int result = WaitForMultipleObjects(2, mEvents, FALSE, INFINITE); // Check if we are the last waiter EnterCriticalSection(&mWaitersCountLock); -- mWaitersCount; bool lastWaiter = (result == (WAIT_OBJECT_0 + _CONDITION_EVENT_ALL)) && (mWaitersCount == 0); LeaveCriticalSection(&mWaitersCountLock); // If we are the last waiter to be notified to stop waiting, reset the event if(lastWaiter) ResetEvent(mEvents[_CONDITION_EVENT_ALL]); } #endif #if defined(_TTHREAD_WIN32_) void condition_variable::notify_one() { // Are there any waiters? EnterCriticalSection(&mWaitersCountLock); bool haveWaiters = (mWaitersCount > 0); LeaveCriticalSection(&mWaitersCountLock); // If we have any waiting threads, send them a signal if(haveWaiters) SetEvent(mEvents[_CONDITION_EVENT_ONE]); } #endif #if defined(_TTHREAD_WIN32_) void condition_variable::notify_all() { // Are there any waiters? EnterCriticalSection(&mWaitersCountLock); bool haveWaiters = (mWaitersCount > 0); LeaveCriticalSection(&mWaitersCountLock); // If we have any waiting threads, send them a signal if(haveWaiters) SetEvent(mEvents[_CONDITION_EVENT_ALL]); } #endif //------------------------------------------------------------------------------ // POSIX pthread_t to unique thread::id mapping logic. // Note: Here we use a global thread safe std::map to convert instances of // pthread_t to small thread identifier numbers (unique within one process). // This method should be portable across different POSIX implementations. //------------------------------------------------------------------------------ #if defined(_TTHREAD_POSIX_) static thread::id _pthread_t_to_ID(const pthread_t &aHandle) { static mutex idMapLock; static std::map idMap; static unsigned long int idCount(1); lock_guard guard(idMapLock); if(idMap.find(aHandle) == idMap.end()) idMap[aHandle] = idCount ++; return thread::id(idMap[aHandle]); } #endif // _TTHREAD_POSIX_ //------------------------------------------------------------------------------ // thread //------------------------------------------------------------------------------ /// Information to pass to the new thread (what to run). struct _thread_start_info { void (*mFunction)(void *); ///< Pointer to the function to be executed. void * mArg; ///< Function argument for the thread function. thread * mThread; ///< Pointer to the thread object. }; // Thread wrapper function. #if defined(_TTHREAD_WIN32_) unsigned WINAPI thread::wrapper_function(void * aArg) #elif defined(_TTHREAD_POSIX_) void * thread::wrapper_function(void * aArg) #endif { // Get thread startup information _thread_start_info * ti = (_thread_start_info *) aArg; try { // Call the actual client thread function ti->mFunction(ti->mArg); } catch(...) { // Uncaught exceptions will terminate the application (default behavior // according to C++11) std::terminate(); } // The thread is no longer executing lock_guard guard(ti->mThread->mDataMutex); ti->mThread->mNotAThread = true; // The thread is responsible for freeing the startup information delete ti; return 0; } thread::thread(void (*aFunction)(void *), void * aArg) { // Serialize access to this thread structure lock_guard guard(mDataMutex); // Fill out the thread startup information (passed to the thread wrapper, // which will eventually free it) _thread_start_info * ti = new _thread_start_info; ti->mFunction = aFunction; ti->mArg = aArg; ti->mThread = this; // The thread is now alive mNotAThread = false; // Create the thread #if defined(_TTHREAD_WIN32_) mHandle = (HANDLE) _beginthreadex(0, 0, wrapper_function, (void *) ti, 0, &mWin32ThreadID); #elif defined(_TTHREAD_POSIX_) int err = 0; pthread_attr_t stackSizeAttribute; size_t stackSize = 0; err = pthread_attr_init(&stackSizeAttribute); if(err) throw "Error: pthread_attr_init"; err = pthread_attr_getstacksize(&stackSizeAttribute, &stackSize); if(err) throw "Error: pthread_attr_getstacksize"; size_t REQUIRED_STACK_SIZE = 4 * 1024 * 1024; if(stackSize < REQUIRED_STACK_SIZE) { err = pthread_attr_setstacksize(&stackSizeAttribute, REQUIRED_STACK_SIZE); if(err) throw "Error: pthread_attr_setstacksize"; } err = pthread_attr_getstacksize(&stackSizeAttribute, &stackSize); if(pthread_create(&mHandle, &stackSizeAttribute, wrapper_function, (void *) ti) != 0) mHandle = 0; #endif // Did we fail to create the thread? if(!mHandle) { mNotAThread = true; delete ti; } } thread::~thread() { if(joinable()) std::terminate(); } void thread::join() { if(joinable()) { #if defined(_TTHREAD_WIN32_) WaitForSingleObject(mHandle, INFINITE); CloseHandle(mHandle); #elif defined(_TTHREAD_POSIX_) pthread_join(mHandle, NULL); #endif } } bool thread::joinable() const { mDataMutex.lock(); bool result = !mNotAThread; mDataMutex.unlock(); return result; } void thread::detach() { mDataMutex.lock(); if(!mNotAThread) { #if defined(_TTHREAD_WIN32_) CloseHandle(mHandle); #elif defined(_TTHREAD_POSIX_) pthread_detach(mHandle); #endif mNotAThread = true; } mDataMutex.unlock(); } thread::id thread::get_id() const { if(!joinable()) return id(); #if defined(_TTHREAD_WIN32_) return id((unsigned long int) mWin32ThreadID); #elif defined(_TTHREAD_POSIX_) return _pthread_t_to_ID(mHandle); #endif } unsigned thread::hardware_concurrency() { #if defined(_TTHREAD_WIN32_) SYSTEM_INFO si; GetSystemInfo(&si); return (int) si.dwNumberOfProcessors; #elif defined(_SC_NPROCESSORS_ONLN) return (int) sysconf(_SC_NPROCESSORS_ONLN); #elif defined(_SC_NPROC_ONLN) return (int) sysconf(_SC_NPROC_ONLN); #else // The standard requires this function to return zero if the number of // hardware cores could not be determined. return 0; #endif } //------------------------------------------------------------------------------ // this_thread //------------------------------------------------------------------------------ thread::id this_thread::get_id() { #if defined(_TTHREAD_WIN32_) return thread::id((unsigned long int) GetCurrentThreadId()); #elif defined(_TTHREAD_POSIX_) return _pthread_t_to_ID(pthread_self()); #endif } }