/* * Copyright 2011, Ben Langmead * * This file is part of Bowtie 2. * * Bowtie 2 is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Bowtie 2 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Bowtie 2. If not, see . */ #ifndef ALIGNER_RESULT_H_ #define ALIGNER_RESULT_H_ #include #include #include "mem_ids.h" #include "ref_coord.h" #include "read.h" #include "filebuf.h" #include "ds.h" #include "edit.h" #include "limit.h" #include "splice_site.h" #include "alignment_3n.h" typedef int64_t TAlScore; #define VALID_AL_SCORE(x) ((x).score_ > MIN_I64) #define VALID_SCORE(x) ((x) > MIN_I64) #define INVALIDATE_SCORE(x) ((x) = MIN_I64) /** * A generic score object for an alignment. Used for accounting during * SW and elsewhere. Encapsulates the score, the number of N positions * and the number gaps in the alignment. * * The scale for 'score' is such that a perfect alignment score is 0 * and a score with non-zero penalty is less than 0. So differences * between scores work as expected, but interpreting an individual * score (larger is better) as a penalty (smaller is better) requires * taking the absolute value. */ class AlnScore { public: /** * Gapped scores are invalid until proven valid. */ inline AlnScore() { reset(); invalidate(); assert(!valid()); } /** * Gapped scores are invalid until proven valid. */ inline AlnScore( TAlScore score, TAlScore ns, TAlScore gaps, bool repeat = false, TAlScore splicescore = 0, bool knownTranscripts = false, bool nearSpliceSites = false, int leftTrim = 0, int rightTrim = 0) { score_ = score; ns_ = ns; gaps_ = gaps; repeat_ = repeat; splicescore_ = splicescore; knownTranscripts_ = knownTranscripts; nearSpliceSites_ = nearSpliceSites; leftTrim_ = leftTrim; rightTrim_ = rightTrim; hisat2_score_ = calculate_hisat2_score(); assert(valid()); } /** * Reset the score. */ void reset() { score_ = hisat2_score_ = ns_ = gaps_ = 0; repeat_ = false; splicescore_ = 0; knownTranscripts_ = false; nearSpliceSites_ = false; leftTrim_ = 0; rightTrim_ = 0; } /** * Return an invalid SwScore. */ inline static AlnScore INVALID() { AlnScore s; s.invalidate(); assert(!s.valid()); return s; } /** * Return true iff this score has a valid value. */ inline bool valid() const { return score_ != MIN_I64; } /** * Make this score invalid (and therefore <= all other scores). */ inline void invalidate() { score_ = MIN_I64; assert(!valid()); } /** * Increment the number of gaps. If currently invalid, this makes * the score valid with gaps == 1. */ inline void incNs(int nceil) { if(++ns_ > nceil) { invalidate(); } assert_lt(ns_, 0x7fffffff); } /** * Return true iff this score is > score o. * Note: An "invalid" score is <= all other scores. */ inline bool operator>(const AlnScore& o) const { if(!VALID_AL_SCORE(o)) { if(!VALID_AL_SCORE(*this)) { // both invalid return false; } else { // I'm valid, other is invalid return true; } } else if(!VALID_AL_SCORE(*this)) { // I'm invalid, other is valid return false; } return score_ > o.score_ || (score_ == o.score_ && hisat2_score_ > o.hisat2_score_); } /** * Scores are equal iff they're bitwise equal. */ inline AlnScore& operator=(const AlnScore& o) { // Profiling shows many cache misses on following lines gaps_ = o.gaps_; ns_ = o.ns_; score_ = o.score_; repeat_ = o.repeat_; hisat2_score_ = o.hisat2_score_; splicescore_ = o.splicescore_; knownTranscripts_ = o.knownTranscripts_; nearSpliceSites_ = o.nearSpliceSites_; leftTrim_ = o.leftTrim_; rightTrim_ = o.rightTrim_; assert_lt(ns_, 0x7fffffff); return *this; } /** * Scores are equal iff they're bitwise equal. */ inline bool operator==(const AlnScore& o) const { // Profiling shows cache misses on following line return VALID_AL_SCORE(*this) && VALID_AL_SCORE(o) && score_ == o.score_ && hisat2_score_ == o.hisat2_score_; } /** * Return true iff the two scores are unequal. */ inline bool operator!=(const AlnScore& o) const { return !(*this == o); } /** * Return true iff this score is >= score o. */ inline bool operator>=(const AlnScore& o) const { if(!VALID_AL_SCORE(o)) { if(!VALID_AL_SCORE(*this)) { // both invalid return false; } else { // I'm valid, other is invalid return true; } } else if(!VALID_AL_SCORE(*this)) { // I'm invalid, other is valid return false; } return score_ > o.score_ || (score_ == o.score_ && hisat2_score_ >= o.hisat2_score_); } /** * Return true iff this score is < score o. */ inline bool operator<(const AlnScore& o) const { return !operator>=(o); } /** * Return true iff this score is <= score o. */ inline bool operator<=(const AlnScore& o) const { return !operator>(o); } /** * Calculate difference between two SwScores. */ inline AlnScore operator-(const AlnScore& o) const { if(!VALID_AL_SCORE(*this)) return *this; AlnScore s; s.gaps_ = gaps_ - o.gaps_; s.ns_ = ns_; s.score_ = score_ - o.score_; s.splicescore_ = splicescore_ - o.splicescore_; assert_lt(s.ns_, 0x7fffffff); return s; } /** * Calculate sum of two SwScores. */ inline AlnScore operator+(const AlnScore& o) const { if(!VALID_AL_SCORE(*this)) return *this; AlnScore s; s.gaps_ = gaps_ + o.gaps_; s.ns_ = ns_; s.score_ = score_ + o.score_; s.repeat_ = repeat_ | o.repeat_; s.splicescore_ = splicescore_ + o.splicescore_; s.hisat2_score_ = hisat2_score_ + o.hisat2_score_; s.knownTranscripts_ = knownTranscripts_ | o.knownTranscripts_; s.nearSpliceSites_ = nearSpliceSites_ | o.nearSpliceSites_; s.leftTrim_ = leftTrim_ + o.leftTrim_; s.rightTrim_ = rightTrim_ + o.rightTrim_; assert_lt(s.ns_, 0x7fffffff); return s; } /** * Add given SwScore into this one. */ inline AlnScore operator+=(const AlnScore& o) { if(VALID_AL_SCORE(*this)) { gaps_ += o.gaps_; score_ += o.score_; repeat_ |= o.repeat_; splicescore_ += o.splicescore_; hisat2_score_ += o.hisat2_score_; knownTranscripts_ |= o.knownTranscripts_; nearSpliceSites_ |= o.nearSpliceSites_; leftTrim_ += o.leftTrim_; rightTrim_ += o.rightTrim_; } return (*this); } /** * Subtract given SwScore from this one. */ inline AlnScore operator-=(const AlnScore& o) { if(VALID_AL_SCORE(*this)) { gaps_ -= o.gaps_; score_ -= o.score_; // splicescore_ -= o.splicescore_; } return (*this); } /** * Calculate difference between two SwScores. */ inline AlnScore operator-(int o) const { return (*this) + -o; } /** * Calculate sum of a SwScore and an integer. */ inline AlnScore operator+(int o) const { if(!VALID_AL_SCORE(*this)) return *this; AlnScore s; s.gaps_ = gaps_; s.ns_ = ns_; s.score_ = score_ + o; // s.splicescore_ = splicescore_; assert_lt(s.ns_, 0x7fffffff); return s; } TAlScore score() const { return score_; } TAlScore hisat2_score() const { return hisat2_score_; } TAlScore penalty() const { return -score_; } TAlScore gaps() const { return gaps_; } TAlScore ns() const { return ns_; } bool repeat() const { return repeat_;} TAlScore splicescore() const { return splicescore_; } bool knownTranscripts() const { return knownTranscripts_; } bool nearSpliceSites() const { return nearSpliceSites_; } bool trimed() const { return leftTrim_ > 0 || rightTrim_ > 0; } TAlScore calculate_hisat2_score() const { // TAlScore 32 bits used for score_ TAlScore score = score_; if(score > MAX_I32) score = MAX_I32; else if(score < MIN_I32) score = MIN_I32; // Next 4 bits for repeat score TAlScore repeat_score = 0; if(repeat_) repeat_score = 1; // Next 4 bits for alignments against transcripts TAlScore transcript_score = 0; if(knownTranscripts_) transcript_score = 2; else if(nearSpliceSites_) transcript_score = 1; // Next 8 bits for splice site score TAlScore splicescore = splicescore_ / 100; if(splicescore > MAX_U8) splicescore = 0; else splicescore = MAX_U8 - splicescore; // Remaining 16 bits (rightmost 16 bits) for sum of left and right trim lengths TAlScore trim = leftTrim_ + rightTrim_; if(trim > MAX_U16) trim = 0; else trim = MAX_U16 - trim; return (score << 32) | (repeat_score << 28) | (transcript_score << 24) | (splicescore << 16) | trim; } // Score accumulated so far (penalties are subtracted starting at 0) TAlScore score_; // HISAT2 score, which is used internally to distinguish the alignments of RNA-seq reads TAlScore hisat2_score_; // Ns accumulated so far. An N opposite a non-gap counts as 1 N // (even if it's N-to-N) TAlScore ns_; // # gaps encountered so far, unless that number exceeds the // target, in which case the score becomes invalid and therefore <= // all other scores TAlScore gaps_; bool repeat_; // splice scores TAlScore splicescore_; // mapped to known transcripts? bool knownTranscripts_; // continuous alignment near (known) splice sites? bool nearSpliceSites_; int leftTrim_; int rightTrim_; }; enum { // This alignment is one of a pair of alignments that form a concordant // alignment for a read ALN_FLAG_PAIR_CONCORD_MATE1 = 1, ALN_FLAG_PAIR_CONCORD_MATE2, // This alignment is one of a pair of alignments that form a discordant // alignment for a read ALN_FLAG_PAIR_DISCORD_MATE1, ALN_FLAG_PAIR_DISCORD_MATE2, // This is an unpaired alignment but the read in question is a pair; // usually, this happens because the read had no reportable paired-end // alignments ALN_FLAG_PAIR_UNPAIRED_MATE1, ALN_FLAG_PAIR_UNPAIRED_MATE2, // This is an unpaired alignment of an unpaired read ALN_FLAG_PAIR_UNPAIRED }; /** * Encapsulates some general information about an alignment that doesn't belong * in AlnRes. Specifically: * * 1. Whether the alignment is paired * 2. If it's paried, whether it's concordant or discordant * 3. Whether this alignment was found after the paired-end categories were * maxed out * 4. Whether the relevant unpaired category was maxed out */ class AlnFlags { public: AlnFlags() { init( ALN_FLAG_PAIR_UNPAIRED, false, // canMax false, // maxed false, // maxedPair false, // nfilt false, // scfilt false, // lenfilt false, // qcfilt false, // mixedMode false, // primary false, // oppAligned false); // oppFw } AlnFlags( int pairing, bool canMax, bool maxed, bool maxedPair, bool nfilt, bool scfilt, bool lenfilt, bool qcfilt, bool mixedMode, bool primary, bool oppAligned, // opposite mate aligned? bool oppFw) // opposite mate aligned forward? { init(pairing, canMax, maxed, maxedPair, nfilt, scfilt, lenfilt, qcfilt, mixedMode, primary, oppAligned, oppFw); } /** * Initialize given values for all settings. */ void init( int pairing, bool canMax, bool maxed, bool maxedPair, bool nfilt, bool scfilt, bool lenfilt, bool qcfilt, bool mixedMode, bool primary, bool oppAligned, bool oppFw) { assert_gt(pairing, 0); assert_leq(pairing, ALN_FLAG_PAIR_UNPAIRED); pairing_ = pairing; canMax_ = canMax; maxed_ = maxed; maxedPair_ = maxedPair; nfilt_ = nfilt; scfilt_ = scfilt; lenfilt_ = lenfilt; qcfilt_ = qcfilt; mixedMode_ = mixedMode; primary_ = primary; oppAligned_ = oppAligned; } /** * Return true iff this alignment is from a paired-end read. */ bool partOfPair() const { assert_gt(pairing_, 0); return pairing_ < ALN_FLAG_PAIR_UNPAIRED; } #ifndef NDEBUG /** * Check that the flags are internally consistent. */ bool repOk() const { assert(partOfPair() || !maxedPair_); return true; } #endif /** * Print out string representation of YF:i flag for indicating whether and * why the mate was filtered. */ bool printYF(BTString& o, bool first) const; /** * Print out string representation of YM:i flag for indicating with the * mate per se aligned repetitively. */ void printYM(BTString& o) const; /** * Print out string representation of YM:i flag for indicating with the * pair containing the mate aligned repetitively. */ void printYP(BTString& o) const; /** * Print out string representation of these flags. */ void printYT(BTString& o) const; inline int pairing() const { return pairing_; } inline bool maxed() const { return maxed_; } inline bool maxedPair() const { return maxedPair_; } /** * Return true iff the alignment is not the primary alignment; i.e. not the * first reported alignment for the fragment. */ inline bool isPrimary() const { return primary_; } /** * Set the primary flag. */ void setPrimary(bool primary) { primary_ = primary; } /** * Return whether both paired and unpaired alignments are considered for * pairs & their constituent mates */ inline bool isMixedMode() const { return mixedMode_; } /** * Return true iff the alignment params are such that it's possible for a * read to be suppressed for being repetitive. */ inline bool canMax() const { return canMax_; } /** * Return true iff the alignment was filtered out. */ bool filtered() const { return !nfilt_ || !scfilt_ || !lenfilt_ || !qcfilt_; } /** * Return true iff the read is mate #1 of a pair, regardless of whether it * aligned as a pair. */ bool readMate1() const { return pairing_ == ALN_FLAG_PAIR_CONCORD_MATE1 || pairing_ == ALN_FLAG_PAIR_DISCORD_MATE1 || pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE1; } /** * Return true iff the read is mate #2 of a pair, regardless of whether it * aligned as a pair. */ bool readMate2() const { return pairing_ == ALN_FLAG_PAIR_CONCORD_MATE2 || pairing_ == ALN_FLAG_PAIR_DISCORD_MATE2 || pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE2; } /** * Return true iff the read aligned as either mate of a concordant pair. */ bool alignedConcordant() const { return pairing_ == ALN_FLAG_PAIR_CONCORD_MATE1 || pairing_ == ALN_FLAG_PAIR_CONCORD_MATE2; } /** * Return true iff the read aligned as either mate of a discordant pair. */ bool alignedDiscordant() const { return pairing_ == ALN_FLAG_PAIR_DISCORD_MATE1 || pairing_ == ALN_FLAG_PAIR_DISCORD_MATE2; } /** * Return true iff the read aligned as either mate of a pair, concordant or * discordant. */ bool alignedPaired() const { return alignedConcordant() || alignedDiscordant(); } /** * Return true iff the read aligned as an unpaired read. */ bool alignedUnpaired() const { return pairing_ == ALN_FLAG_PAIR_UNPAIRED; } /** * Return true iff the read aligned as an unpaired mate from a paired read. */ bool alignedUnpairedMate() const { return pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE1 || pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE2; } bool mateAligned() const { return oppAligned_; } protected: // See ALN_FLAG_PAIR_* above int pairing_; // True iff the alignment params are such that it's possible for a read to // be suppressed for being repetitive bool canMax_; // This alignment is sampled from among many alignments that, taken // together, cause this mate to align non-uniquely bool maxed_; // The paired-end read of which this mate is part has repetitive concordant // alignments bool maxedPair_; bool nfilt_; // read/mate filtered b/c proportion of Ns exceeded ceil bool scfilt_; // read/mate filtered b/c length can't provide min score bool lenfilt_; // read/mate filtered b/c less than or equal to seed mms bool qcfilt_; // read/mate filtered by upstream qc // Whether both paired and unpaired alignments are considered for pairs & // their constituent mates bool mixedMode_; // The read is the primary read bool primary_; // True iff the opposite mate aligned bool oppAligned_; }; static inline ostream& operator<<(ostream& os, const AlnScore& o) { os << o.score(); return os; } // Forward declaration class BitPairReference; // A given AlnRes can be one of these three types enum { ALN_RES_TYPE_UNPAIRED = 1, // unpaired alignment ALN_RES_TYPE_UNPAIRED_MATE1, // mate #1 in pair, aligned unpaired ALN_RES_TYPE_UNPAIRED_MATE2, // mate #2 in pair, aligned unpaired ALN_RES_TYPE_MATE1, // mate #1 in paired-end alignment ALN_RES_TYPE_MATE2 // mate #2 in paired-end alignment }; /** * Seed alignment summary */ struct SeedAlSumm { SeedAlSumm() { reset(); } void reset() { nonzTot = nonzFw = nonzRc = 0; nrangeTot = nrangeFw = nrangeRc = 0; neltTot = neltFw = neltRc = 0; minNonzRangeFw = minNonzRangeRc = 0; maxNonzRangeFw = maxNonzRangeRc = 0; minNonzEltFw = minNonzEltRc = 0; maxNonzEltFw = maxNonzEltRc = 0; } size_t nonzTot; size_t nonzFw; size_t nonzRc; size_t nrangeTot; size_t nrangeFw; size_t nrangeRc; size_t neltTot; size_t neltFw; size_t neltRc; size_t minNonzRangeFw; size_t minNonzRangeRc; size_t maxNonzRangeFw; size_t maxNonzRangeRc; size_t minNonzEltFw; size_t minNonzEltRc; size_t maxNonzEltFw; size_t maxNonzEltRc; }; /** * Encapsulates a stacked alignment, a nice intermediate format for alignments * from which to left-align gaps, print CIGAR strings, and print MD:Z strings. */ class StackedAln { public: StackedAln() : stackRef_(RES_CAT), stackRel_(RES_CAT), stackSNP_(RES_CAT), stackRead_(RES_CAT), stackSkip_(RES_CAT), cigOp_(RES_CAT), cigRun_(RES_CAT), mdzOp_(RES_CAT), mdzChr_(RES_CAT), mdzRun_(RES_CAT) { reset(); } /** * Reset to an uninitialized state. */ void reset() { inited_ = false; trimLS_ = trimLH_ = trimRS_ = trimRH_ = 0; stackRef_.clear(); stackRel_.clear(); stackSNP_.clear(); stackRead_.clear(); stackSkip_.clear(); cigDistMm_ = cigCalc_ = false; cigOp_.clear(); cigRun_.clear(); mdzCalc_ = false; mdzOp_.clear(); mdzChr_.clear(); mdzRun_.clear(); } /** * Return true iff the stacked alignment has been initialized. */ bool inited() const { return inited_; } /** * Initialized the stacked alignment with respect to a read string, a list of * edits (expressed left-to-right), and integers indicating how much hard and * soft trimming has occurred on either end of the read. * * s: read sequence * ed: all relevant edits, including ambiguous nucleotides * trimLS: # bases soft-trimmed from LHS * trimLH: # bases hard-trimmed from LHS * trimRS: # bases soft-trimmed from RHS * trimRH: # bases hard-trimmed from RHS */ void init( const BTDnaString& s, const EList& ed, size_t trimLS, size_t trimLH, size_t trimRS, size_t trimRH); /** * Left-align all the gaps. If this changes the alignment and the CIGAR or * MD:Z strings have already been calculated, this renders them invalid. * * We left-align gaps with in the following way: for each gap, we check * whether the character opposite the rightmost gap character is the same * as the character opposite the character just to the left of the gap. If * this is the case, we can slide the gap to the left and make the * rightmost position previously covered by the gap into a non-gap. * * This scheme allows us to push the gap past a mismatch. BWA does seem to * allow this. It's not clear that Bowtie 2 should, since moving the * mismatch could cause a mismatch with one base quality to be replaced * with a mismatch with a different base quality. */ void leftAlign(bool pastMms); /** * Build the CIGAR list, if it hasn't already built. Returns true iff it * was built for the first time. */ bool buildCigar(bool xeq); /** * Build the MD:Z list, if it hasn't already built. Returns true iff it * was built for the first time. */ bool buildMdz(); /** * Write a CIGAR representation of the alignment to the given string and/or * char buffer. */ void writeCigar(BTString* o, char* oc) const; /** * Write a CIGAR representation of the alignment to the given string and/or * char buffer. This function is for HISAT-3N. */ void writeCigar(Alignment* o, char* oc) const; /** * Write an MD:Z representation of the alignment to the given string and/or * char buffer. */ void writeMdz(BTString* o, char* oc) const; /** * Check internal consistency. */ #ifndef NDEBUG bool repOk() const { if(inited_) { assert_eq(stackRef_.size(), stackRead_.size()); assert_eq(stackRef_.size(), stackRel_.size()); } return true; } #endif protected: bool inited_; // true iff stacked alignment is initialized size_t trimLS_; // amount soft-trimmed from the LHS size_t trimLH_; // amount hard-trimmed from the LHS size_t trimRS_; // amount soft-trimmed from the RHS size_t trimRH_; // amount hard-trimmed from the RHS EList stackRef_; // reference characters EList stackRel_; // bars relating reference to read characters EList stackSNP_; // known SNP? EList stackRead_; // read characters EList stackSkip_; bool cigDistMm_; // distinguish between =/X, rather than just M bool cigCalc_; // whether we've calculated CIGAR ops/runs EList cigOp_; // CIGAR operations EList cigRun_; // CIGAR run lengths bool mdzCalc_; // whether we've calculated MD:Z ops/runs EList mdzOp_; // MD:Z operations EList mdzChr_; // MD:Z operations EList mdzRun_; // MD:Z run lengths }; /** * Encapsulates an alignment result. The result comprises: * * 1. All the nucleotide edits for both mates ('ned'). * 2. All "edits" where an ambiguous reference char is resolved to an * unambiguous char ('aed'). * 3. The score for the alginment, including summary information about the * number of gaps and Ns involved. * 4. The reference id, strand, and 0-based offset of the leftmost character * involved in the alignment. * 5. Information about trimming prior to alignment and whether it was hard or * soft. * 6. Information about trimming during alignment and whether it was hard or * soft. Local-alignment trimming is usually soft when aligning nucleotide * reads. * * Note that the AlnRes, together with the Read and an AlnSetSumm (*and* the * opposite mate's AlnRes and Read in the case of a paired-end alignment), * should contain enough information to print an entire alignment record. * * TRIMMING * * Accounting for trimming is tricky. Trimming affects: * * 1. The values of the trim* and pretrim* fields. * 2. The offsets of the Edits in the ELists. * 3. The read extent, if the trimming is soft. * 4. The read extent and the read sequence and length, if trimming is hard. * * Handling 1. is not too difficult. 2., 3., and 4. are handled in setShape(). */ class AlnRes { public: AlnRes() : // ned_(RES_CAT), // aed_(RES_CAT) ned_(NULL), aed_(NULL), ned_node_(NULL), aed_node_(NULL), raw_edits_(NULL) { reset(); } AlnRes(const AlnRes& other) : ned_(NULL), aed_(NULL), ned_node_(NULL), aed_node_(NULL), raw_edits_(NULL) { shapeSet_ = other.shapeSet_; rdlen_ = other.rdlen_; rdid_ = other.rdid_; rdrows_ = other.rdrows_; score_ = other.score_; oscore_ = other.oscore_; refcoord_ = other.refcoord_; reflen_ = other.reflen_; refival_ = other.refival_; rdextent_ = other.rdextent_; rdexrows_ = other.rdexrows_; rfextent_ = other.rfextent_; seedmms_ = other.seedmms_; seedlen_ = other.seedlen_; minsc_ = other.minsc_; nuc5p_ = other.nuc5p_; nuc3p_ = other.nuc3p_; refns_ = other.refns_; type_ = other.type_; fraglenSet_ = other.fraglenSet_; fraglen_ = other.fraglen_; pretrimSoft_ = other.pretrimSoft_; pretrim5p_ = other.pretrim5p_; pretrim3p_ = other.pretrim3p_; trimSoft_ = other.trimSoft_; trim5p_ = other.trim5p_; trim3p_ = other.trim3p_; repeat_ = other.repeat_; num_spliced_ = other.num_spliced_; raw_edits_ = other.raw_edits_; if(raw_edits_ != NULL) { assert(ned_ == NULL && aed_ == NULL); assert(ned_node_ == NULL && aed_node_ == NULL); ned_node_ = raw_edits_->new_node(); aed_node_ = raw_edits_->new_node(); assert(ned_node_ != NULL && aed_node_ != NULL); ned_ = &(ned_node_->payload); aed_ = &(aed_node_->payload); assert(other.ned_ != NULL && other.aed_ != NULL); *ned_ = *(other.ned_); *aed_ = *(other.aed_); } } AlnRes& operator=(const AlnRes& other) { if(this == &other) return *this; shapeSet_ = other.shapeSet_; rdlen_ = other.rdlen_; rdid_ = other.rdid_; rdrows_ = other.rdrows_; score_ = other.score_; oscore_ = other.oscore_; refcoord_ = other.refcoord_; reflen_ = other.reflen_; refival_ = other.refival_; rdextent_ = other.rdextent_; rdexrows_ = other.rdexrows_; rfextent_ = other.rfextent_; seedmms_ = other.seedmms_; seedlen_ = other.seedlen_; minsc_ = other.minsc_; nuc5p_ = other.nuc5p_; nuc3p_ = other.nuc3p_; refns_ = other.refns_; type_ = other.type_; fraglenSet_ = other.fraglenSet_; fraglen_ = other.fraglen_; pretrimSoft_ = other.pretrimSoft_; pretrim5p_ = other.pretrim5p_; pretrim3p_ = other.pretrim3p_; trimSoft_ = other.trimSoft_; trim5p_ = other.trim5p_; trim3p_ = other.trim3p_; repeat_ = other.repeat_; num_spliced_ = other.num_spliced_; assert(raw_edits_ == NULL || raw_edits_ == other.raw_edits_); raw_edits_ = other.raw_edits_; if(ned_ != NULL) { assert(aed_ != NULL); ned_->clear(); aed_->clear(); } else if(raw_edits_ != NULL) { assert(aed_ == NULL); assert(ned_node_ == NULL && aed_node_ == NULL); ned_node_ = raw_edits_->new_node(); aed_node_ = raw_edits_->new_node(); assert(ned_node_ != NULL && aed_node_ != NULL); ned_ = &(ned_node_->payload); aed_ = &(aed_node_->payload); } if(other.ned_ != NULL) { assert(other.aed_ != NULL); *ned_ = *(other.ned_); *aed_ = *(other.aed_); } return *this; } ~AlnRes() { #ifndef NDEBUG if(ned_node_ == NULL || aed_node_ == NULL) { assert(ned_node_ == NULL && aed_node_ == NULL); assert(ned_ == NULL && aed_ == NULL); assert(raw_edits_ == NULL); } else { assert(ned_node_ != NULL && aed_node_ != NULL); assert(ned_ != NULL && aed_ != NULL); assert(raw_edits_ != NULL); } #endif if(ned_ != NULL) { ned_->clear(); aed_->clear(); raw_edits_->delete_node(ned_node_); raw_edits_->delete_node(aed_node_); ned_ = aed_ = NULL; ned_node_ = aed_node_ = NULL; raw_edits_ = NULL; } } /* DK - temporary implementation */ void init_raw_edits(LinkedEList >* raw_edits) { if(raw_edits == NULL) return; raw_edits_ = raw_edits; assert(ned_ == NULL && aed_ == NULL); assert(ned_node_ == NULL && aed_node_ == NULL); ned_node_ = raw_edits_->new_node(); aed_node_ = raw_edits_->new_node(); assert(ned_node_ != NULL && aed_node_ != NULL); ned_ = &(ned_node_->payload); aed_ = &(aed_node_->payload); } /** * Clear all contents. */ void reset(); /** * Reverse all edit lists. */ void reverseEdits() { (*ned_).reverse(); (*aed_).reverse(); } /** * Invert positions of edits so that they're with respect to the other end * of the alignment. The assumption is that the .pos fields of the edits * in the ned_/aed_/ced_ structures are offsets with respect to the first * aligned character (i.e. after all trimming). */ void invertEdits() { assert(shapeSet_); assert_gt(rdlen_, 0); assert_gt(rdrows_, 0); Edit::invertPoss(*ned_, rdexrows_, false); Edit::invertPoss(*aed_, rdexrows_, false); } /** * Return true iff no result has been installed. */ bool empty() const { if(!VALID_AL_SCORE(score_)) { assert(ned_ == NULL || ned_->empty()); assert(aed_ == NULL || aed_->empty()); assert(!refcoord_.inited()); assert(!refival_.inited()); return true; } else { return false; } } /** * Return the identifier for the reference that the alignment * occurred in. */ inline TRefId refid() const { assert(shapeSet_); return refcoord_.ref(); } /** * Return the orientation that the alignment occurred in. */ inline int orient() const { assert(shapeSet_); return refcoord_.orient(); } /** * Return the 0-based offset of the alignment into the reference * sequence it aligned to. */ inline TRefOff refoff() const { assert(shapeSet_); return refcoord_.off(); } /** * Set arguments to coordinates for the upstream-most and downstream-most * reference positions involved in the alignment. */ inline void getCoords( Coord& st, // out: install starting coordinate here Coord& en, // out: install ending coordinate here Coord& st2, Coord& en2) const { assert(shapeSet_); st.init(refcoord_); en.init(refcoord_); en.adjustOff(refExtent() - 1); Coord right = refcoord_right(); st2.init(right); st2.adjustOff(1 - refExtent()); en2.init(right); } /** * Set arguments to coordinates for the upstream-most and downstream-most * reference positions covered by the read taking any read trimming into * account. I.e. if the upstream-most offset involved in an alignment is * 40 but the read was hard-trimmed by 5 on that end, the inferred * upstream-most covered position is 35. */ inline void getExtendedCoords( Coord& st, // out: install starting coordinate here Coord& en, // out: install ending coordinate here Coord& st2, Coord& en2) const { getCoords(st, en, st2, en2); // Take trimming into account int64_t trim_st = (fw() ? trim5p_ : trim3p_); int64_t trim_en = (fw() ? trim3p_ : trim5p_); trim_st += (fw() ? pretrim5p_ : pretrim3p_); trim_en += (fw() ? pretrim3p_ : pretrim5p_); st.adjustOff(-trim_st); en.adjustOff( trim_en); st2.adjustOff(-trim_st); en2.adjustOff( trim_en); } /** * Set the upstream-most reference offset involved in the alignment, and * the extent of the alignment (w/r/t the reference) */ void setShape( TRefId id, // id of reference aligned to TRefOff off, // offset of first aligned char into ref seq TRefOff reflen, // length of reference sequence aligned to bool fw, // aligned to Watson strand? size_t rdlen, // length of read after hard trimming, before soft TReadId rdid, // read ID bool pretrimSoft, // whether trimming prior to alignment was soft size_t pretrim5p, // # poss trimmed form 5p end before alignment size_t pretrim3p, // # poss trimmed form 3p end before alignment bool trimSoft, // whether local-alignment trimming was soft size_t trim5p, // # poss trimmed form 5p end during alignment size_t trim3p); // # poss trimmed form 3p end during alignment /** * Return true iff the reference chars involved in this alignment result * are entirely within with given bounds. */ bool within( TRefId id, TRefOff off, bool fw, size_t extent) const { if(refcoord_.ref() == id && refcoord_.off() >= off && refcoord_.off() + refExtent() <= off + extent && refcoord_.fw() == fw) { return true; } return false; } /** * Set alignment score for this alignment. */ void setScore(AlnScore score) { score_ = score; } /** * Set the upstream-most and downstream-most nucleotides. */ void setNucs(bool fw, int nup, int ndn) { nuc5p_ = fw ? nup : ndn; nuc3p_ = fw ? ndn : nup; } /** * Return the 0-based offset of the leftmost reference position involved in * the alignment. */ const Coord& refcoord() const { return refcoord_; } /** * Return the 0-based offset of the leftmost reference position involved in * the alignment. */ const Interval& refival() const { return refival_; } /** * Return the 0-based offset of the leftmost reference position involved in * the alignment. */ Coord& refcoord() { return refcoord_; } /** * Return the 0-based offset of the rightmost reference position involved in * the alignment. */ Coord refcoord_right() const { Coord coord_right = refcoord_; TRefOff right = coord_right.off() + rfextent_ - 1; for(size_t i = 0; i < ned_->size(); i++) { const Edit& ed = (*ned_)[i]; if(ed.type == EDIT_TYPE_SPL) { right += ed.splLen; } } coord_right.setOff(right); return coord_right; } /** * Return true if this alignment is to the Watson strand. */ inline bool fw() const { return refcoord_.fw(); } AlnScore score() const { return score_; } AlnScore oscore() const { return oscore_; } EList& ned() { return *ned_; } EList& aed() { return *aed_; } const EList& ned() const { return *ned_; } const EList& aed() const { return *aed_; } size_t readExtent() const { return rdextent_; } size_t readExtentRows() const { return rdexrows_; } size_t readLength() const { return rdlen_; } TReadId readID() const { return rdid_; } bool spliced() const { return num_spliced_ > 0; } size_t num_spliced() const { return num_spliced_; } uint8_t spliced_whichsense_transcript() const { uint8_t whichsense = SPL_UNKNOWN; if(spliced()) { for(size_t i = 0; i < ned_->size(); i++) { const Edit& ed = (*ned_)[i]; if(ed.type != EDIT_TYPE_SPL) continue; if(whichsense == SPL_UNKNOWN) { whichsense = ed.splDir; } else if(ed.splDir != SPL_UNKNOWN) { assert_neq(whichsense, SPL_UNKNOWN); if(whichsense == SPL_FW || whichsense == SPL_SEMI_FW) { if(ed.splDir != SPL_FW && ed.splDir != SPL_SEMI_FW) { whichsense = SPL_UNKNOWN; break; } } if(whichsense == SPL_RC || whichsense == SPL_SEMI_RC) { if(ed.splDir != SPL_RC && ed.splDir != SPL_SEMI_RC) { whichsense = SPL_UNKNOWN; break; } } } } } return whichsense; } /** * Return the number of reference nucleotides involved in the alignment * (i.e. the number of characters in the inclusive range from the first * matched-up ref char to the last). */ size_t refExtent() const { return rfextent_; } /** * Return length of reference sequence aligned to. */ TRefOff reflen() const { return reflen_; } /** * Return the number of reference nucleotides in the alignment (i.e. the * number of characters in the inclusive range from the first matched-up * ref char to the last). */ size_t refNucExtent() const { return rfextent_; } /** * Print the sequence for the read that aligned using A, C, G and * T. This will simply print the read sequence (or its reverse * complement). */ void printSeq( const Read& rd, const BTDnaString* dns, BTString& o) const; /** * Print the quality string for the read that aligned. This will * simply print the read qualities (or their reverse). */ void printQuals( const Read& rd, const BTString* dqs, BTString& o) const; /** * Print a stacked alignment with the reference on top, query on bottom, * and lines connecting matched-up positions. */ void printStacked( const Read& rd, std::ostream& o) const { printStacked(refcoord_.fw() ? rd.patFw : rd.patRc, o); } /** * Print a stacked alignment with the reference on bottom, query on top, * and lines connecting matched-up positions. */ void printStacked( const BTDnaString& seq, std::ostream& o) const { Edit::printQAlign(o, seq, *ned_); // Print reference offset below reference string o << "^" << std::endl; o << "(" << refcoord_.ref() << "," << refcoord_.off() << ")" << std::endl; } #ifndef NDEBUG /** * Check that alignment score is internally consistent. */ bool repOk() const { assert(refcoord_.repOk()); if(shapeSet_) { assert_lt(refoff(), reflen_); } assert(refival_.repOk()); assert(VALID_AL_SCORE(score_) || ned_ == NULL || ned_->empty()); assert(VALID_AL_SCORE(score_) || aed_ == NULL || aed_->empty()); assert(empty() || refcoord_.inited()); assert(empty() || refival_.inited()); assert_geq(rdexrows_, rdextent_); assert(empty() || rdextent_ > 0); assert(empty() || rfextent_ > 0); return true; } /** * Check that alignment score is internally consistent. */ bool repOk(const Read& rd) const { assert(Edit::repOk(*ned_, refcoord_.fw() ? rd.patFw : rd.patRc, refcoord_.fw(), trimmed5p(true), trimmed3p(true))); return repOk(); } #endif #ifndef NDEBUG /** * Assuming this AlnRes is an alignment for 'rd', check that the * alignment and 'rd' are compatible with the corresponding * reference sequence. */ bool matchesRef( const Read& rd, const BitPairReference& ref, BTDnaString& rf, BTDnaString& rdseq, BTString& qseq, SStringExpandable& raw_refbuf, SStringExpandable& destU32, EList& matches, SStringExpandable& raw_refbuf2, EList& reflens, EList& refoffs); #endif /** * Set information about the alignment parameters that led to this * alignment. */ void setParams( int seedmms, int seedlen, int seedival, int64_t minsc) { seedmms_ = seedmms; seedlen_ = seedlen; seedival_ = seedival; minsc_ = minsc; } // Accessors for alignment parameters int seedmms() const { return seedmms_; } int seedlen() const { return seedlen_; } int seedival() const { return seedival_; } int64_t minScore() const { return minsc_; } /** * Is the ith row from the 5' end of the DP table one of the ones * soft-trimmed away by local alignment? */ inline bool trimmedRow5p(size_t i) const { return i < trim5p_ || rdrows_ - i - 1 < trim3p_; } /** * Is the ith character from the 5' end of read sequence one of the ones * soft-trimmed away by local alignment? */ inline bool trimmedPos5p(size_t i) const { return i < trim5p_ || rdlen_ - i - 1 < trim3p_; } /** * Is the ith row from the 5' end of the DP table one of the ones that * survived local-alignment soft trimming? */ inline bool alignedRow5p(size_t i) const { return !trimmedRow5p(i); } /** * Is the ith character from the 5' end of the read sequence one of the * ones that survived local-alignment soft trimming? */ inline bool alignedPos5p(size_t i) const { return !trimmedPos5p(i); } /** * Return true iff this AlnRes and the given AlnRes overlap. Two AlnRess * overlap if they share a cell in the overall dynamic programming table: * i.e. if there exists a read position s.t. that position in both reads * matches up with the same reference character. E.g., the following * alignments (drawn schematically as paths through a dynamic programming * table) are redundant: * * a b a b * \ \ \ \ * \ \ \ \ * \ \ \ \ * ---\ \ \ * \ ---\--- * ---\ \ \ * \ \ \ \ * \ \ \ \ * \ \ \ \ * a b b a * * We iterate over each read position that hasn't been hard-trimmed, but * only overlaps at positions that have also not been soft-trimmed are * considered. */ bool overlap(AlnRes& res); /** * Return true iff this read was unpaired to begin with. */ inline bool readUnpaired() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_UNPAIRED; } /** * Return true iff this alignment aligned in an unpaired fashion; not part * of a concordant or discordant pair. */ inline bool alignedUnpaired() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_UNPAIRED || type_ == ALN_RES_TYPE_UNPAIRED_MATE1 || type_ == ALN_RES_TYPE_UNPAIRED_MATE2; } /** * Return true iff this alignment aligned as mate #1 or mate #2 in a pair, * either concordant or discordant. */ inline bool alignedPaired() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_MATE1 || type_ == ALN_RES_TYPE_MATE2; } /** * Return true iff this read started as mate #1 in a pair. */ inline bool readMate1() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_MATE1 || type_ == ALN_RES_TYPE_UNPAIRED_MATE1; } /** * Return true iff this read aligned as mate #1 in a concordant or * discordant pair. */ inline bool alignedMate1() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_MATE1; } /** * Return true iff this alignment aligned as mate #2 in a pair, either * concordant or discordant. */ inline bool readMate2() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_MATE2 || type_ == ALN_RES_TYPE_UNPAIRED_MATE2; } /** * Return true iff this read aligned as mate #2 in a concordant or * discordant pair. */ inline bool alignedMate2() const { assert_gt(type_, 0); return type_ == ALN_RES_TYPE_MATE2; } /** * Return true iff fragment length is set. */ bool isFraglenSet() const { return fraglenSet_; } /** * Set whether this alignment is unpaired, or is mate #1 or mate #2 in a * paired-end alignment. */ void setMateParams( int type, const AlnRes* omate, // alignment result for the opposite mate const AlnFlags& flags, // flags for this mate const SpliceSiteDB* ssdb = NULL, // splice sites uint64_t threads_rids_mindist = 0, EList* spliceSites = NULL) { assert_gt(type, 0); type_ = type; fraglen_ = 0; if(omate != NULL) { oscore_ = omate->score_; // When should we calculate a fragment length here? There are a // couple reasonable ideas: // 1. When mates align concordantly // 2. When both mates align to the same reference string // BWA seems to do 2., so that's what we'll do here. bool sameChr = true; if((sameChr && refcoord_.ref() == omate->refcoord_.ref()) || flags.alignedConcordant()) { setFragmentLength(*omate, ssdb, threads_rids_mindist, spliceSites); } else { assert(!isFraglenSet()); } } } /** * Assuming this alignment and the given alignment are at the extreme ends * of a fragment, return the length of the fragment. We take all clipping, * both hard and soft, into account here. Any clipping that occurred * earlier and isn't accounted for within Bowtie2 should be accounted for * by the user in how they set the maximum and minimum fragment length * settings. */ int64_t setFragmentLength(const AlnRes& omate, const SpliceSiteDB* ssdb = NULL, // splice sites uint64_t threads_rids_mindist = 0, EList* spliceSites = NULL) { Coord st, en, st2, en2; Coord ost, oen, ost2, oen2; assert_eq(refid(), omate.refid()); getExtendedCoords(st, en, st2, en2); omate.getExtendedCoords(ost, oen, ost2, oen2); bool imUpstream = false; if(st.off() < ost.off()) { imUpstream = true; } else if(st.off() == ost.off()) { if(st.fw() && ost.fw() && readMate1()) { imUpstream = true; } else if(st.fw() && !ost.fw()) { imUpstream = true; } else { imUpstream = false; } } else { imUpstream = false; } TRefOff up, dn, up_right, dn_left; if(imUpstream) { up = std::min(st2.off(), ost.off()); up_right = std::min(en2.off(), oen.off()); dn_left = std::max(st2.off(), ost.off()); dn = std::max(en2.off(), oen.off()); } else { up = std::min(st.off(), ost2.off()); up_right = std::min(en.off(), oen2.off()); dn_left = std::max(st.off(), ost2.off()); dn = std::max(en.off(), oen2.off()); } assert_geq(dn, up); TRefOff intron_len = 0; if(ssdb != NULL && !repeat() && up_right + 100 < dn_left) { assert(spliceSites != NULL); if(spliceSites->size() == 0) { ssdb->getRightSpliceSites(refid(), up_right, dn_left - up_right, *spliceSites); } for(size_t si = 0; si < spliceSites->size(); si++) { const SpliceSite& ss = (*spliceSites)[si]; if(!ss._fromfile && ss._readid + threads_rids_mindist > rdid_) continue; if(ss.left() <= up || ss.right() >= dn) continue; TRefOff tmp_intron_len = ss.intron_len(); if(intron_len < tmp_intron_len) { intron_len = tmp_intron_len; } } } fraglen_ = 1 + dn - up; assert_geq(fraglen_, intron_len); fraglen_ -= intron_len; if(!imUpstream) { fraglen_ = -fraglen_; } fraglenSet_ = true; return fraglen_; } /** * Return fragment length inferred by a paired-end alignment, or -1 if the * alignment is not part of a pair. */ int64_t fragmentLength() const { assert_gt(type_, 0); assert(fraglenSet_); return fraglen_; } /** * Initialize new AlnRes. */ void init( size_t rdlen, // # chars after hard trimming TReadId rdid, // read ID AlnScore score, // alignment score const EList* ned, // nucleotide edits size_t ned_i, // first position to copy size_t ned_n, // # positions to copy const EList* aed, // ambiguous base resolutions size_t aed_i, // first position to copy size_t aed_n, // # positions to copy Coord refcoord, // leftmost ref pos of 1st al char TRefOff reflen, // length of the reference LinkedEList >* raw_edits, int seedmms = -1,// # seed mms allowed int seedlen = -1,// seed length int seedival = -1,// space between seeds int64_t minsc = -1,// minimum score for valid aln int nuc5p = -1,// int nuc3p = -1, bool pretrimSoft = false, size_t pretrim5p = 0, // trimming prior to alignment size_t pretrim3p = 0, // trimming prior to alignment bool trimSoft = true, size_t trim5p = 0, // trimming from alignment size_t trim3p = 0, // trimming from alignment bool repeat = false); // repeat /** * Return number of bases trimmed from the 5' end. Argument determines * whether we're counting hard- or soft-trimmed bases. */ size_t trimmed5p(bool soft) const { size_t trim = 0; if(pretrimSoft_ == soft) trim += pretrim5p_; if(trimSoft_ == soft) trim += trim5p_; return trim; } /** * Return number of bases trimmed from the 3' end. Argument determines * whether we're counting hard- or soft-trimmed bases. */ size_t trimmed3p(bool soft) const { size_t trim = 0; if(pretrimSoft_ == soft) trim += pretrim3p_; if(trimSoft_ == soft) trim += trim3p_; return trim; } /** * Return number of bases trimmed from the left end. Argument determines * whether we're counting hard- or soft-trimmed bases. */ size_t trimmedLeft(bool soft) const { return fw() ? trimmed5p(soft) : trimmed3p(soft); } /** * Return number of bases trimmed from the right end. Argument determines * whether we're counting hard- or soft-trimmed bases. */ size_t trimmedRight(bool soft) const { return fw() ? trimmed3p(soft) : trimmed5p(soft); } bool repeat() const { return repeat_; } /** * Set the number of reference Ns covered by the alignment. */ void setRefNs(size_t refns) { refns_ = refns; } /** * Return the number of reference Ns covered by the alignment. */ size_t refNs() const { return refns_; } /** * Clip away portions of the alignment that are outside the given bounds. * Clipping is soft if soft == true, hard otherwise. */ void clipOutside(bool soft, TRefOff refi, TRefOff reff); /** * Soft trim bases from the LHS of the alignment. */ void clipLeft(size_t rd_amt, size_t rf_amt); /** * Soft trim bases from the RHS of the alignment. */ void clipRight(size_t rd_amt, size_t rf_amt); /** * In debug mode, we put a copy of the decoded nucleotide sequence here. */ ASSERT_ONLY(BTDnaString drd); /** * Return true iff this AlnRes should come before the given AlnRes in a * prioritized list of results. */ bool operator<(const AlnRes& o) const { return score_ > o.score_; } bool operator==(const AlnRes& o) const { return shapeSet_ == o.shapeSet_ && rdlen_ == o.rdlen_ && rdid_ == o.rdid_ && rdrows_ == o.rdrows_ && score_ == o.score_ && //oscore_ == o.oscore_ && *ned_ == *(o.ned_) && *aed_ == *(o.aed_) && refcoord_ == o.refcoord_ && reflen_ == o.reflen_ && refival_ == o.refival_ && rdextent_ == o.rdextent_ && rdexrows_ == o.rdexrows_ && rfextent_ == o.rfextent_ && seedmms_ == o.seedmms_ && seedlen_ == o.seedlen_ && seedival_ == o.seedival_ && minsc_ == o.minsc_ && nuc5p_ == o.nuc5p_ && nuc3p_ == o.nuc3p_ && refns_ == o.refns_ && type_ == o.type_ && fraglen_ == o.fraglen_ && pretrimSoft_ == o.pretrimSoft_ && pretrim5p_ == o.pretrim5p_ && pretrim3p_ == o.pretrim3p_ && trimSoft_ == o.trimSoft_ && trim5p_ == o.trim5p_ && trim3p_ == o.trim3p_ && repeat_ == o.repeat_ && num_spliced_ == o.num_spliced_; } /** * Initialize a StackedAln (stacked alignment) object w/r/t this alignment. */ void initStacked(const Read& rd, StackedAln& st) const { size_t trimLS = trimmed5p(true); size_t trimLH = trimmed5p(false); size_t trimRS = trimmed3p(true); size_t trimRH = trimmed3p(false); size_t len_trimmed = rd.length() - trimLS - trimRS; if(!fw()) { Edit::invertPoss(const_cast&>(*ned_), len_trimmed, false); swap(trimLS, trimRS); swap(trimLH, trimRH); } st.init( fw() ? rd.patFw : rd.patRc, *ned_, trimLS, trimLH, trimRS, trimRH); if(!fw()) { Edit::invertPoss(const_cast&>(*ned_), len_trimmed, false); } } protected: /** * Given that rdextent_ and ned_ are already set, calculate rfextent_. */ void calcRefExtent() { assert_gt(rdextent_, 0); rfextent_ = rdextent_; for(size_t i = 0; i < ned_->size(); i++) { if((*ned_)[i].isRefGap()) rfextent_--; if((*ned_)[i].isReadGap()) rfextent_++; } } bool shapeSet_; // true iff setShape() has been called size_t rdlen_; // length of the original read TReadId rdid_; // read id size_t rdrows_; // # rows in alignment problem AlnScore score_; // best SW score found AlnScore oscore_; // score of opposite mate EList* ned_; // base edits EList* aed_; // ambiguous base resolutions Coord refcoord_; // ref coordinates (seq idx, offset, orient) TRefOff reflen_; // reference length Interval refival_; // ref interval (coord + length) size_t rdextent_; // number of read chars involved in alignment size_t rdexrows_; // number of read rows involved in alignment size_t rfextent_; // number of ref chars involved in alignment int seedmms_; // number of mismatches allowed in seed int seedlen_; // length of seed int seedival_; // interval between seeds int64_t minsc_; // minimum score int nuc5p_; // 5'-most decoded base; clipped if excluding end int nuc3p_; // 3'-most decoded base; clipped if excluding end size_t refns_; // # of reference Ns overlapped int type_; // unpaired or mate #1 or mate #2? bool fraglenSet_; // true iff a fragment length has been inferred int64_t fraglen_; // inferred fragment length // A tricky aspect of trimming is that we have to decide what the units are: // read positions, reference positions??? We choose read positions here. // In other words, if an alignment overhangs the end of the reference and // part of the overhanging portion is a reference gap, we have to make sure // the trim amount reflects the number of *read characters* to trim // including the character opposite the reference gap. // Nucleotide-sequence trimming bool pretrimSoft_; // trimming prior to alignment is soft? size_t pretrim5p_; // # bases trimmed from 5p end prior to alignment size_t pretrim3p_; // # bases trimmed from 3p end prior to alignment bool trimSoft_; // trimming by local alignment is soft? size_t trim5p_; // # bases trimmed from 5p end by local alignment size_t trim3p_; // # bases trimmed from 3p end by local alignment bool repeat_; // repeat? size_t num_spliced_; LinkedEListNode >* ned_node_; LinkedEListNode >* aed_node_; LinkedEList >* raw_edits_; }; /** * Unique ID for a cell in the overall DP table. This is a helpful concept * because of our definition of "redundnant". Two alignments are redundant iff * they have at least one cell in common in the overall DP table. */ struct RedundantCell { RedundantCell() { rfid = 0; fw = true; rfoff = 0; rdoff = 0; } RedundantCell( TRefId rfid_, bool fw_, TRefOff rfoff_, size_t rdoff_) { init(rfid_, fw_, rfoff_, rdoff_); } void init( TRefId rfid_, bool fw_, TRefOff rfoff_, size_t rdoff_) { rfid = rfid_; fw = fw_; rfoff = rfoff_; rdoff = rdoff_; } /** * Return true iff this RedundantCell is less than the given RedundantCell. */ inline bool operator<(const RedundantCell& c) const { if(rfid < c.rfid) return true; if(rfid > c.rfid) return false; if(!fw && c.fw) return true; if( fw && !c.fw) return false; if(rfoff < c.rfoff) return true; if(rfoff > c.rfoff) return false; return rdoff < c.rdoff; } /** * Return true iff this RedundantCell is greater than the given * RedundantCell. */ inline bool operator>(const RedundantCell& c) const { if(rfid > c.rfid) return true; if(rfid < c.rfid) return false; if( fw && !c.fw) return true; if(!fw && c.fw) return false; if(rfoff > c.rfoff) return true; if(rfoff < c.rfoff) return false; return rdoff > c.rdoff; } /** * Return true iff this RedundantCell is equal to the given RedundantCell. */ inline bool operator==(const RedundantCell& c) const { return rfid == c.rfid && fw == c.fw && rfoff == c.rfoff && rdoff == c.rdoff; } TRefId rfid; // reference id bool fw; // orientation TRefOff rfoff; // column size_t rdoff; // row }; /** * Encapsulates data structures and routines allowing client to determine * whether one alignment is redundant (has a DP cell in common with) with a set * of others. * * Adding cells to and checking cell against this data structure can get rather * slow when there are many alignments in play. Dividing the burden over * read-position bins helps some. */ class RedundantAlns { public: RedundantAlns(int cat = DP_CAT) : cells_(cat) { } /** * Empty the cell database. */ void reset() { cells_.clear(); } /** * Initialize and set the list of sets to equal the read length. */ void init(size_t npos) { cells_.resize(npos); for(size_t i = 0; i < npos; i++) { cells_[i].clear(); } } /** * Add all of the cells involved in the given alignment to the database. */ void add(const AlnRes& res); /** * Return true iff the given alignment has at least one cell that overlaps * one of the cells in the database. */ bool overlap(const AlnRes& res); protected: EList > cells_; }; typedef uint64_t TNumAlns; /** * Encapsulates a concise summary of a set of alignment results for a * given pair or mate. Referring to the fields of this object should * provide enough information to print output records for the read. */ class AlnSetSumm { public: AlnSetSumm() { reset(); } /** * Given an unpaired read (in either rd1 or rd2) or a read pair * (mate 1 in rd1, mate 2 in rd2). */ explicit AlnSetSumm( const Read* rd1, const Read* rd2, const EList* rs1, const EList* rs2, const EList* rs1u, const EList* rs2u, bool exhausted1, bool exhausted2, TRefId orefid, TRefOff orefoff, bool repeat) { init(rd1, rd2, rs1, rs2, rs1u, rs2u, exhausted1, exhausted2, orefid, orefoff, repeat); } explicit AlnSetSumm( AlnScore best1, AlnScore secbest1, AlnScore best2, AlnScore secbest2, AlnScore bestPaired, AlnScore secbestPaired, TNumAlns other1, TNumAlns other2, bool paired, bool exhausted1, bool exhausted2, TRefId orefid, TRefOff orefoff, bool repeat, TNumAlns numAlns1, TNumAlns numAlns2, TNumAlns numAlnsPaired) { init( best1, secbest1, best2, secbest2, bestPaired, secbestPaired, other1, other2, paired, exhausted1, exhausted2, orefid, orefoff, repeat, numAlns1, numAlns2, numAlnsPaired); } /** * Set to uninitialized state. */ void reset() { best1_.invalidate(); secbest1_.invalidate(); best2_.invalidate(); secbest2_.invalidate(); bestPaired_.invalidate(); secbestPaired_.invalidate(); other1_ = other2_ = 0; paired_ = false; exhausted1_ = exhausted2_ = false; orefid_ = -1; orefoff_ = -1; repeat_ = false; numAlns1_ = numAlns2_= numAlnsPaired_ = 0; } void init( const Read* rd1, const Read* rd2, const EList* rs1, const EList* rs2, const EList* rs1u, const EList* rs2u, bool exhausted1, bool exhausted2, TRefId orefid, TRefOff orefoff, bool repeat); /** * Initialize given fields. See constructor for how fields are set. */ void init( AlnScore best1, AlnScore secbest1, AlnScore best2, AlnScore secbest2, AlnScore bestPaired, AlnScore secbestPaired, TNumAlns other1, TNumAlns other2, bool paired, bool exhausted1, bool exhausted2, TRefId orefid, TRefOff orefoff, bool repeat, TNumAlns numAlns1, TNumAlns numAlns2, TNumAlns numAlnsPaired) { best1_ = best1; secbest1_ = secbest1; best2_ = best2; secbest2_ = secbest2; bestPaired_ = bestPaired; secbestPaired_ = secbestPaired; other1_ = other1; other2_ = other2; paired_ = paired; exhausted1_ = exhausted1; exhausted2_ = exhausted2; orefid_ = orefid; orefoff_ = orefoff; repeat_ = repeat; numAlns1_ = numAlns1; numAlns2_ = numAlns2; numAlnsPaired_ = numAlnsPaired; assert(repOk()); } /** * Return true iff there is at least a best alignment */ bool empty() const { assert(repOk()); return !VALID_AL_SCORE(best1_); } #ifndef NDEBUG /** * Check that the summary is internally consistent. */ bool repOk() const { assert(other1_ == 0 || VALID_AL_SCORE(secbest1_)); assert(other1_ != 0 || !VALID_AL_SCORE(secbest1_)); assert(other2_ == 0 || VALID_AL_SCORE(secbest2_)); assert(other2_ != 0 || !VALID_AL_SCORE(secbest2_)); return true; } #endif AlnScore best1() const { return best1_; } AlnScore secbest1() const { return secbest1_; } AlnScore best2() const { return best2_; } AlnScore secbest2() const { return secbest2_; } AlnScore bestPaired() const { return bestPaired_; } AlnScore secbestPaired() const { return secbestPaired_; } TNumAlns other1() const { return other1_; } TNumAlns other2() const { return other2_; } bool paired() const { return paired_; } bool exhausted1() const { return exhausted1_; } bool exhausted2() const { return exhausted2_; } TRefId orefid() const { return orefid_; } TRefOff orefoff() const { return orefoff_; } bool repeat() const { return repeat_; } TNumAlns numAlns1() const { return numAlns1_; } TNumAlns numAlns2() const { return numAlns2_; } TNumAlns numAlnsPaired() const { return numAlnsPaired_; } void numAlns1(TNumAlns numAlns1) { numAlns1_ = numAlns1; } void numAlns2(TNumAlns numAlns2) { numAlns2_ = numAlns2; } void numAlnsPaired(TNumAlns numAlnsPaired) { numAlnsPaired_ = numAlnsPaired; } /** * */ AlnScore best(bool mate1) const { return mate1 ? best1_ : best2_; } bool exhausted(bool mate1) const { return mate1 ? exhausted1_ : exhausted2_; } /** * Return the second-best score for the specified mate. If the alignment * is paired and the specified mate aligns uniquely, return an invalid * second-best score. This allows us to treat mates separately, so that * repetitive paired-end alignments don't trump potentially unique unpaired * alignments. */ AlnScore secbestMate(bool mate1) const { return mate1 ? secbest1_ : secbest2_; } /** * Return the second-best score for the specified mate. If the alignment * is paired and the specified mate aligns uniquely, return an invalid * second-best score. This allows us to treat mates separately, so that * repetitive paired-end alignments don't trump potentially unique unpaired * alignments. */ AlnScore secbest(bool mate1) const { if(paired_) { if(mate1) { //if(!secbest1_.valid()) { return secbest1_; //} } else { //if(!secbest2_.valid()) { return secbest2_; //} } //return secbestPaired_; } else { return mate1 ? secbest1_ : secbest2_; } } protected: AlnScore bestPaired_; // best full-alignment score found for this read AlnScore secbestPaired_; // second-best AlnScore best1_; // best full-alignment score found for this read AlnScore secbest1_; // second-best AlnScore best2_; // best full-alignment score found for this read AlnScore secbest2_; // second-best TNumAlns other1_; // # more alignments within N points of second-best TNumAlns other2_; // # more alignments within N points of second-best bool paired_; // results are paired bool exhausted1_; // searched exhaustively for mate 1 alignments? bool exhausted2_; // searched exhaustively for mate 2 alignments? TRefId orefid_; TRefOff orefoff_; bool repeat_; TNumAlns numAlns1_; // number of alignments for mate 1 as singleton or discordantly mapped TNumAlns numAlns2_; // number of alignments for mate 2 as singleton or discordantly mapped TNumAlns numAlnsPaired_; // number of concordant pair alignments }; #endif