hisat-3n/sam.h
2025-01-18 21:09:52 +08:00

2014 lines
63 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SAM_H_
#define SAM_H_
#include <string>
#include <sys/time.h>
#include "ds.h"
#include "read.h"
#include "util.h"
#include "aligner_result.h"
#include "scoring.h"
#include "alt.h"
#include "filebuf.h"
#include "alignment_3n.h"
enum {
// Comments use language from v1.4-r962 spec
SAM_FLAG_PAIRED = 1, // templ. having mult. frag.s in sequencing
SAM_FLAG_MAPPED_PAIRED = 2, // each frag properly aligned
SAM_FLAG_UNMAPPED = 4, // fragment unmapped
SAM_FLAG_MATE_UNMAPPED = 8, // next fragment in template unmapped
SAM_FLAG_QUERY_STRAND = 16, // SEQ is reverse comp'ed from original
SAM_FLAG_MATE_STRAND = 32, // next fragment SEQ reverse comp'ed
SAM_FLAG_FIRST_IN_PAIR = 64, // first fragment in template
SAM_FLAG_SECOND_IN_PAIR = 128, // last fragment in template
SAM_FLAG_NOT_PRIMARY = 256, // secondary alignment
SAM_FLAG_FAILS_CHECKS = 512, // not passing quality controls
SAM_FLAG_DUPLICATE = 1024 // PCR or optical duplicate
};
class AlnRes;
class AlnFlags;
class AlnSetSumm;
/**
* Encapsulates all the various ways that a user may wish to customize SAM
* output.
*/
template<typename index_t>
class SamConfig {
typedef EList<std::string> StrList;
typedef EList<size_t> LenList;
public:
SamConfig(
const StrList& refnames, // reference sequence names
const LenList& reflens, // reference sequence lengths
const StrList& repnames, // repeat sequence names
const LenList& replens, // repeat sequence lengths
bool truncQname, // truncate read name to 255?
bool omitsec, // omit secondary SEQ/QUAL
bool noUnal, // omit unaligned reads
const std::string& pg_id, // id
const std::string& pg_pn, // name
const std::string& pg_vn, // version
const std::string& pg_cl, // command-line
const std::string& rgs, // read groups string
int rna_strandness,
bool print_as,
bool print_xs,
bool print_xss,
bool print_yn,
bool print_xn,
bool print_cs,
bool print_cq,
bool print_x0,
bool print_x1,
bool print_xm,
bool print_xo,
bool print_xg,
bool print_nm,
bool print_md,
bool print_yf,
bool print_yi,
bool print_ym,
bool print_yp,
bool print_yt,
bool print_ys,
bool print_zs,
bool print_xr,
bool print_xt,
bool print_xd,
bool print_xu,
bool print_ye, // streak of failed DPs at end
bool print_yl, // longest streak of failed DPs
bool print_yu, // index of last succeeded DP
bool print_xp, // print seed hit information
bool print_yr, // # redundant seed hits
bool print_zb, // # Ftab lookups
bool print_zr, // # redundant path checks
bool print_zf, // # FM Index ops
bool print_zm, // FM Index op string for best-first search
bool print_zi, // # seed extend loop iters
bool print_zp,
bool print_zu,
bool print_xs_a,
bool print_nh) :
truncQname_(truncQname),
omitsec_(omitsec),
noUnal_(noUnal),
pg_id_(pg_id),
pg_pn_(pg_pn),
pg_vn_(pg_vn),
pg_cl_(pg_cl),
rgs_(rgs),
refnames_(refnames),
reflens_(reflens),
repnames_(repnames),
replens_(replens),
rna_strandness_(rna_strandness),
print_as_(print_as), // alignment score of best alignment
print_xs_(print_xs), // alignment score of second-best alignment
print_xss_(print_xss),
print_yn_(print_yn), // minimum valid score and perfect score
print_xn_(print_xn),
print_cs_(print_cs),
print_cq_(print_cq),
print_x0_(print_x0),
print_x1_(print_x1),
print_xm_(print_xm),
print_xo_(print_xo),
print_xg_(print_xg),
print_nm_(print_nm),
print_md_(print_md),
print_yf_(print_yf),
print_yi_(print_yi),
print_ym_(print_ym),
print_yp_(print_yp),
print_yt_(print_yt),
print_ys_(print_ys),
print_zs_(print_zs),
print_xr_(print_xr),
print_xt_(print_xt), // time elapsed in microseconds
print_xd_(print_xd), // DP extend attempts
print_xu_(print_xu), // ungapped extend attempts
print_ye_(print_ye), // streak of failed DPs at end
print_yl_(print_yl), // longest streak of failed DPs
print_yu_(print_yu), // index of last succeeded DP
print_xp_(print_xp), // print seed hit information
print_yr_(print_yr), // index of last succeeded DP
print_zb_(print_zb), // # Ftab lookups
print_zr_(print_zr), // # redundant path checks
print_zf_(print_zf), // # FM Index ops
print_zm_(print_zm), // FM Index op string for best-first search
print_zi_(print_zi), // # seed extend loop iters
print_zp_(print_zp), // # seed extend loop iters
print_zu_(print_zu), // # seed extend loop iters
print_xs_a_(print_xs_a),
print_nh_(print_nh)
{
assert_eq(refnames_.size(), reflens_.size());
}
/**
* Print a reference name in a way that doesn't violate SAM's character
* constraints. \*|[!-()+-<>-~][!-~]*
*/
void printRefName(
BTString& o,
const std::string& name)
const;
/**
* Print a :Z optional field where certain characters (whitespace, colon
* and percent) are escaped using % escapes.
*/
template<typename T>
void printOptFieldEscapedZ(BTString& o, const T& s) const {
size_t len = s.length();
for(size_t i = 0; i < len; i++) {
if(s[i] < 33 || s[i] > 126 || s[i] == ':' || s[i] == '%') {
// percent-encode it
o.append('%');
int ms = s[i] >> 4;
int ls = s[i] & 15;
assert_range(0, 15, ms);
assert_range(0, 15, ls);
o.append("0123456789ABCDEF"[ms]);
o.append("0123456789ABCDEF"[ls]);
} else {
o.append(s[i]);
}
}
}
/**
* Print a :Z optional field where newline characters are escaped using %
* escapes.
*/
template<typename T>
void printOptFieldNewlineEscapedZ(BTString& o, const T& s) const {
size_t len = s.length();
for(size_t i = 0; i < len; i++) {
if(s[i] == 10 || s[i] == 13 || s[i] == '%') {
// percent-encode it
o.append('%');
int ms = s[i] >> 4;
int ls = s[i] & 15;
assert_range(0, 15, ms);
assert_range(0, 15, ls);
o.append("0123456789ABCDEF"[ms]);
o.append("0123456789ABCDEF"[ls]);
} else {
o.append(s[i]);
}
}
}
/**
* Print a read name in a way that doesn't violate SAM's character
* constraints. [!-?A-~]{1,255} (i.e. [33, 63], [65, 126])
*/
template<typename TStr>
void printReadName(
BTString& o,
const TStr& name,
bool omitSlashMate)
const
{
size_t namelen = name.length();
if(omitSlashMate &&
namelen >= 2 &&
name[namelen-2] == '/' &&
(name[namelen-1] == '1' || name[namelen-1] == '2' || name[namelen-1] == '3'))
{
namelen -= 2;
}
if(truncQname_ && namelen > 255) {
namelen = 255;
}
for(size_t i = 0; i < namelen; i++) {
if(truncQname_ && isspace(name[i])) {
return;
}
o.append(name[i]);
}
}
/**
* Print a reference name given a reference index.
*/
void printRefNameFromIndex(
BTString& o,
size_t i,
bool repeat = false)
const;
/**
* Print SAM header to given output buffer.
*/
void printHeader(
BTString& o,
const std::string& rgid,
const std::string& rgs,
bool printHd,
bool printSq,
bool printPg)
const;
/**
* Print the @HD header line to the given string.
*/
void printHdLine(BTString& o, const char *samver) const;
/**
* Print the @SQ header lines to the given string.
*/
void printSqLines(BTString& o) const;
/**
* Print the @PG header line to the given string.
*/
void printPgLine(BTString& o) const;
/**
* Print the optional flags to the given string.
*/
void printAlignedOptFlags(
BTString& o, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // the read
AlnRes& res, // individual alignment result
StackedAln& staln, // stacked alignment
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metics
const Scoring& sc, // scoring scheme
const char *mapqInp, // inputs to MAPQ calculation
const ALTDB<index_t>* altdb)
const;
/**
* Print the optional flags to the given string.
*/
void printAlignedOptFlags(
Alignment* newAlignment, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // the read
AlnRes& res, // individual alignment result
StackedAln& staln, // stacked alignment
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metics
const Scoring& sc, // scoring scheme
const char *mapqInp, // inputs to MAPQ calculation
const ALTDB<index_t>* altdb)
const;
/**
* Print the optional flags to the given string.
*/
void printEmptyOptFlags(
BTString& o, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // the read
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metrics
const Scoring& sc) // scoring scheme
const;
void printEmptyOptFlags(
Alignment* newAlignment, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // the read
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metrics
const Scoring& sc) // scoring scheme
const;
/**
* Return true iff we should try to obey the SAM spec's recommendations
* that:
*
* SEQ and QUAL of secondary alignments should be set to * to reduce the
* file size.
*/
bool omitSecondarySeqQual() const {
return omitsec_;
}
bool omitUnalignedReads() const {
return noUnal_;
}
protected:
bool truncQname_; // truncate QNAME to 255 chars?
bool omitsec_; // omit secondary
bool noUnal_; // omit unaligned reads
std::string pg_id_; // @PG ID: Program record identifier
std::string pg_pn_; // @PG PN: Program name
std::string pg_vn_; // @PG VN: Program version
std::string pg_cl_; // @PG CL: Program command-line
std::string rgs_; // Read-group string to add to all records
const StrList& refnames_; // reference sequence names
const LenList& reflens_; // reference sequence lengths
const StrList& repnames_; // repeat sequence names
const LenList& replens_; // repeat sequence lengths
int rna_strandness_;
// Which alignment flags to print?
// Following are printed by BWA-SW
bool print_as_; // AS:i: Alignment score generated by aligner
bool print_xs_; // XS:i: Suboptimal alignment score
bool print_xss_;// Xs:i: Best invalid alignment score found
bool print_yn_; // YN:i:, Yn:i: minimum valid score and perfect score
bool print_xn_; // XN:i: Number of ambiguous bases in the referenece
// Other optional flags
bool print_cs_; // CS:Z: Color read sequence on the original strand
bool print_cq_; // CQ:Z: Color read quality on the original strand
// Following are printed by BWA
bool print_x0_; // X0:i: Number of best hits
bool print_x1_; // X1:i: Number of sub-optimal best hits
bool print_xm_; // XM:i: Number of mismatches in the alignment
bool print_xo_; // XO:i: Number of gap opens
bool print_xg_; // XG:i: Number of gap extensions (incl. opens)
bool print_nm_; // NM:i: Edit dist. to the ref, Ns count, clipping doesn't
bool print_md_; // MD:Z: String for mms. [0-9]+(([A-Z]|\^[A-Z]+)[0-9]+)*2
// Following are Bowtie2-specific
bool print_yf_; // YF:i: Read was filtered out?
bool print_yi_; // YI:Z: Summary of inputs to MAPQ calculation
bool print_ym_; // YM:i: Read was repetitive when aligned unpaired?
bool print_yp_; // YP:i: Read was repetitive when aligned paired?
bool print_yt_; // YT:Z: String representing alignment type
bool print_ys_; // YS:i: Score of other mate
bool print_zs_; // ZS:i: Pseudo-random seed
bool print_xr_; // XR:Z: Original read string
bool print_xt_; // XT:i: Time taken to align
bool print_xd_; // XD:i: DP problems
bool print_xu_; // XU:i: ungapped alignment
bool print_ye_; // YE:i: streak of failed DPs at end
bool print_yl_; // YL:i: longest streak of failed DPs
bool print_yu_; // YU:i: index of last succeeded DP
bool print_xp_; // XP:BI: seed hit information
bool print_yr_; // YR:i: # redundant seed hits
bool print_zb_; // ZB:i: # Ftab lookups
bool print_zr_; // ZR:i: # redundant path checks
bool print_zf_; // ZF:i: # FM Index ops
bool print_zm_; // ZM:i: FM ops string for best-first search
bool print_zi_; // ZI:i: # extend loop iters
bool print_zp_; // ZP:i: Score of best/second-best paired-end alignment
bool print_zu_; // ZU:i: Score of best/second-best unpaired alignment
bool print_xs_a_; // XS:A:[+=] Sense/anti-sense strand splice sites correspond to
bool print_nh_; // NH:i: # alignments
};
/**
* Print a reference name in a way that doesn't violate SAM's character
* constraints. \*|[!-()+-<>-~][!-~]* (i.e. [33, 63], [65, 126])
*/
template<typename index_t>
void SamConfig<index_t>::printRefName(
BTString& o,
const std::string& name) const
{
size_t namelen = name.length();
for(size_t i = 0; i < namelen; i++) {
if(isspace(name[i])) {
return;
}
o.append(name[i]);
}
}
/**
* Print a reference name given a reference index.
*/
template<typename index_t>
void SamConfig<index_t>::printRefNameFromIndex(BTString& o, size_t i, bool repeat) const {
if(repeat) {
printRefName(o, repnames_[i]);
} else {
printRefName(o, refnames_[i]);
}
}
/**
* Print SAM header to given output buffer.
*/
template<typename index_t>
void SamConfig<index_t>::printHeader(
BTString& o,
const string& rgid,
const string& rgs,
bool printHd,
bool printSq,
bool printPg) const
{
if(printHd) printHdLine(o, "1.0");
if(printSq) printSqLines(o);
if(!rgid.empty()) {
o.append("@RG");
o.append(rgid.c_str());
o.append(rgs.c_str());
o.append('\n');
}
if(printPg) printPgLine(o);
}
/**
* Print the @HD header line to the given string.
*/
template<typename index_t>
void SamConfig<index_t>::printHdLine(BTString& o, const char *samver) const {
o.append("@HD\tVN:");
o.append(samver);
o.append("\tSO:unsorted\n");
}
/**
* Print the @SQ header lines to the given string.
*/
template<typename index_t>
void SamConfig<index_t>::printSqLines(BTString& o) const {
char buf[1024];
for(size_t i = 0; i < refnames_.size(); i++) {
o.append("@SQ\tSN:");
printRefName(o, refnames_[i]);
o.append("\tLN:");
itoa10<size_t>(reflens_[i], buf);
o.append(buf);
o.append('\n');
}
if (!threeN) {
for(size_t i = 0; i < repnames_.size(); i++) {
o.append("@SQ\tSN:");
printRefName(o, repnames_[i]);
o.append("\tLN:");
itoa10<size_t>(replens_[i], buf);
o.append(buf);
o.append('\n');
}
}
}
/**
* Print the @PG header line to the given string.
*/
template<typename index_t>
void SamConfig<index_t>::printPgLine(BTString& o) const {
o.append("@PG\tID:");
o.append(pg_id_.c_str());
o.append("\tPN:");
o.append(pg_pn_.c_str());
o.append("\tVN:");
o.append(pg_vn_.c_str());
o.append("\tCL:\"");
o.append(pg_cl_.c_str());
o.append('"');
o.append('\n');
}
#define WRITE_SEP() { \
if(!first) o.append('\t'); \
first = false; \
}
/**
* Print the optional flags to the given string.
*/
template<typename index_t>
void SamConfig<index_t>::printAlignedOptFlags(
BTString& o, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // the read
AlnRes& res, // individual alignment result
StackedAln& staln, // stacked alignment buffer
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metrics
const Scoring& sc, // scoring scheme
const char *mapqInp, // inputs to MAPQ calculation
const ALTDB<index_t>* altdb)
const
{
char buf[1024];
if(print_as_) {
// AS:i: Alignment score generated by aligner
itoa10<TAlScore>(res.score().score(), buf);
WRITE_SEP();
o.append("AS:i:");
o.append(buf);
}
// Do not output suboptimal alignment score, which conflicts with Cufflinks and StringTie
if(print_xs_) {
// XS:i: Suboptimal alignment score
// Use ZS:i: to avoid conflict with XS:A:
AlnScore sco = summ.secbestMate(rd.mate < 2);
if(sco.valid()) {
itoa10<TAlScore>(sco.score(), buf);
WRITE_SEP();
o.append("ZS:i:");
o.append(buf);
}
}
if(print_xn_) {
// XN:i: Number of ambiguous bases in the referenece
itoa10<size_t>(res.refNs(), buf);
WRITE_SEP();
o.append("XN:i:");
o.append(buf);
}
if(print_x0_) {
// X0:i: Number of best hits
}
if(print_x1_) {
// X1:i: Number of sub-optimal best hits
}
size_t num_mm = 0;
size_t num_go = 0;
size_t num_gx = 0;
for(size_t i = 0; i < res.ned().size(); i++) {
if(res.ned()[i].isMismatch()) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_mm++;
}
} else if(res.ned()[i].isReadGap()) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_go++;
num_gx++;
}
while(i < res.ned().size()-1 &&
res.ned()[i+1].pos == res.ned()[i].pos &&
res.ned()[i+1].isReadGap())
{
i++;
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_gx++;
}
}
} else if(res.ned()[i].isRefGap()) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_go++;
num_gx++;
}
while(i < res.ned().size()-1 &&
res.ned()[i+1].pos == res.ned()[i].pos+1 &&
res.ned()[i+1].isRefGap())
{
i++;
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_gx++;
}
}
}
}
if(print_xm_) {
// XM:i: Number of mismatches in the alignment
itoa10<size_t>(num_mm, buf);
WRITE_SEP();
o.append("XM:i:");
o.append(buf);
}
if(print_xo_) {
// XO:i: Number of gap opens
itoa10<size_t>(num_go, buf);
WRITE_SEP();
o.append("XO:i:");
o.append(buf);
}
if(print_xg_) {
// XG:i: Number of gap extensions (incl. opens)
itoa10<size_t>(num_gx, buf);
WRITE_SEP();
o.append("XG:i:");
o.append(buf);
}
if(print_nm_) {
// NM:i: Edit dist. to the ref, Ns count, clipping doesn't
size_t NM = 0;
for(size_t i = 0; i < res.ned().size(); i++) {
if(res.ned()[i].type != EDIT_TYPE_SPL) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
NM++;
}
}
}
itoa10<size_t>(NM, buf);
WRITE_SEP();
o.append("NM:i:");
o.append(buf);
}
if(print_md_) {
// MD:Z: String for mms. [0-9]+(([A-Z]|\^[A-Z]+)[0-9]+)*2
WRITE_SEP();
o.append("MD:Z:");
staln.buildMdz();
staln.writeMdz(
&o, // output buffer
NULL); // no char buffer
}
if(print_ys_ && summ.paired()) {
// YS:i: Alignment score of opposite mate
assert(res.oscore().valid());
itoa10<TAlScore>(res.oscore().score(), buf);
WRITE_SEP();
o.append("YS:i:");
o.append(buf);
}
if(print_yn_) {
// YN:i: Minimum valid score for this mate
TAlScore mn = sc.scoreMin.f<TAlScore>(rd.length());
itoa10<TAlScore>(mn, buf);
WRITE_SEP();
o.append("YN:i:");
o.append(buf);
// Yn:i: Perfect score for this mate
TAlScore pe = sc.perfectScore(rd.length());
itoa10<TAlScore>(pe, buf);
WRITE_SEP();
o.append("Yn:i:");
o.append(buf);
}
if(print_xss_) {
// Xs:i: Best invalid alignment score of this mate
bool one = true;
if(flags.partOfPair() && !flags.readMate1()) {
one = false;
}
TAlScore bst = one ? prm.bestLtMinscMate1 : prm.bestLtMinscMate2;
if(bst > std::numeric_limits<TAlScore>::min()) {
itoa10<TAlScore>(bst, buf);
WRITE_SEP();
o.append("Xs:i:");
o.append(buf);
}
if(flags.partOfPair()) {
// Ys:i: Best invalid alignment score of opposite mate
bst = one ? prm.bestLtMinscMate2 : prm.bestLtMinscMate1;
if(bst > std::numeric_limits<TAlScore>::min()) {
itoa10<TAlScore>(bst, buf);
WRITE_SEP();
o.append("Ys:i:");
o.append(buf);
}
}
}
if(print_zs_) {
// ZS:i: Pseudo-random seed for read
itoa10<uint32_t>(rd.seed, buf);
WRITE_SEP();
o.append("ZS:i:");
o.append(buf);
}
if(print_yt_) {
// YT:Z: String representing alignment type
WRITE_SEP();
flags.printYT(o);
}
if(print_yp_ && flags.partOfPair() && flags.canMax()) {
// YP:i: Read was repetitive when aligned paired?
WRITE_SEP();
flags.printYP(o);
}
if(print_ym_ && flags.canMax() && (flags.isMixedMode() || !flags.partOfPair())) {
// YM:i: Read was repetitive when aligned unpaired?
WRITE_SEP();
flags.printYM(o);
}
if(print_yf_ && flags.filtered()) {
// YF:i: Read was filtered?
first = flags.printYF(o, first) && first;
}
if(print_yi_) {
// Print MAPQ calibration info
if(mapqInp[0] != '\0') {
// YI:i: Suboptimal alignment score
WRITE_SEP();
o.append("YI:Z:");
o.append(mapqInp);
}
}
if(flags.partOfPair() && print_zp_) {
// ZP:i: Score of best concordant paired-end alignment
WRITE_SEP();
o.append("ZP:Z:");
if(summ.bestPaired().valid()) {
itoa10<TAlScore>(summ.bestPaired().score(), buf);
o.append(buf);
} else {
o.append("NA");
}
// Zp:i: Second-best concordant paired-end alignment score
WRITE_SEP();
o.append("Zp:Z:");
if(summ.secbestPaired().valid()) {
itoa10<TAlScore>(summ.secbestPaired().score(), buf);
o.append(buf);
} else {
o.append("NA");
}
}
if(print_zu_) {
// ZU:i: Score of best unpaired alignment
AlnScore best = (rd.mate <= 1 ? summ.best1() : summ.best2());
AlnScore secbest = (rd.mate <= 1 ? summ.secbest1() : summ.secbest2());
WRITE_SEP();
o.append("ZU:i:");
if(best.valid()) {
itoa10<TAlScore>(best.score(), buf);
o.append(buf);
} else {
o.append("NA");
}
// Zu:i: Score of second-best unpaired alignment
WRITE_SEP();
o.append("Zu:i:");
if(secbest.valid()) {
itoa10<TAlScore>(secbest.score(), buf);
o.append(buf);
} else {
o.append("NA");
}
}
if(!rgs_.empty()) {
WRITE_SEP();
o.append(rgs_.c_str());
}
if(print_xt_) {
// XT:i: Timing
WRITE_SEP();
struct timeval tv_end;
struct timezone tz_end;
gettimeofday(&tv_end, &tz_end);
size_t total_usecs =
(tv_end.tv_sec - prm.tv_beg.tv_sec) * 1000000 +
(tv_end.tv_usec - prm.tv_beg.tv_usec);
itoa10<size_t>(total_usecs, buf);
o.append("XT:i:");
o.append(buf);
}
if(print_xd_) {
// XD:i: Extend DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nExDps, buf);
o.append("XD:i:");
o.append(buf);
// Xd:i: Mate DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nMateDps, buf);
o.append("Xd:i:");
o.append(buf);
}
if(print_xu_) {
// XU:i: Extend ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nExUgs, buf);
o.append("XU:i:");
o.append(buf);
// Xu:i: Mate ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nMateUgs, buf);
o.append("Xu:i:");
o.append(buf);
}
if(print_ye_) {
// YE:i: Streak of failed DPs at end
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFail, buf);
o.append("YE:i:");
o.append(buf);
// Ye:i: Streak of failed ungaps at end
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFail, buf);
o.append("Ye:i:");
o.append(buf);
}
if(print_yl_) {
// YL:i: Longest streak of failed DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFailStreak, buf);
o.append("YL:i:");
o.append(buf);
// Yl:i: Longest streak of failed ungaps
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFailStreak, buf);
o.append("Yl:i:");
o.append(buf);
}
if(print_yu_) {
// YU:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nDpLastSucc, buf);
o.append("YU:i:");
o.append(buf);
// Yu:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nUgLastSucc, buf);
o.append("Yu:i:");
o.append(buf);
}
if(print_xp_) {
// XP:Z: String describing seed hits
WRITE_SEP();
o.append("XP:B:I,");
itoa10<uint64_t>(prm.nSeedElts, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsFw, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsRc, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMean, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMedian, buf);
o.append(buf);
}
if(print_yr_) {
// YR:i: Redundant seed hits
WRITE_SEP();
itoa10<uint64_t>(prm.nRedundants, buf);
o.append("YR:i:");
o.append(buf);
}
if(print_zb_) {
// ZB:i: Ftab ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nFtabs, buf);
o.append("ZB:i:");
o.append(buf);
}
if(print_zr_) {
// ZR:Z: Redundant path skips in seed alignment
WRITE_SEP();
o.append("ZR:Z:");
itoa10<uint64_t>(prm.nRedSkip, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedFail, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedIns, buf); o.append(buf);
}
if(print_zf_) {
// ZF:i: FM Index ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nSdFmops, buf);
o.append("ZF:i:");
o.append(buf);
// Zf:i: FM Index ops for offset resolution
WRITE_SEP();
itoa10<uint64_t>(prm.nExFmops, buf);
o.append("Zf:i:");
o.append(buf);
}
if(print_zm_) {
// ZM:Z: Print FM index op string for best-first search
WRITE_SEP();
o.append("ZM:Z:");
prm.fmString.print(o, buf);
}
if(print_zi_) {
// ZI:i: Seed extend loop iterations
WRITE_SEP();
itoa10<uint64_t>(prm.nExIters, buf);
o.append("ZI:i:");
o.append(buf);
}
if(print_xs_a_) {
if(rna_strandness_ == RNA_STRANDNESS_UNKNOWN) {
uint8_t whichsense = res.spliced_whichsense_transcript();
if(whichsense != SPL_UNKNOWN) {
WRITE_SEP();
o.append("XS:A:");
if(whichsense == SPL_FW || whichsense == SPL_SEMI_FW) {
o.append('+');
} else {
assert(whichsense == SPL_RC || whichsense == SPL_SEMI_RC);
o.append('-');
}
}
} else {
WRITE_SEP();
o.append("XS:A:");
char strandness = '+';
if(res.readMate1()) {
if(res.orient()) {
if(rna_strandness_ == RNA_STRANDNESS_R || rna_strandness_ == RNA_STRANDNESS_RF) {
strandness = '-';
}
} else {
if(rna_strandness_ == RNA_STRANDNESS_F || rna_strandness_ == RNA_STRANDNESS_FR) {
strandness = '-';
}
}
} else {
assert(res.readMate2());
assert(rna_strandness_ == RNA_STRANDNESS_FR || rna_strandness_ == RNA_STRANDNESS_RF);
if(res.orient()) {
if(rna_strandness_ == RNA_STRANDNESS_FR) {
strandness = '-';
}
} else {
if(rna_strandness_ == RNA_STRANDNESS_RF) {
strandness = '-';
}
}
}
o.append(strandness);
}
}
if(print_nh_) {
if(flags.alignedPaired()) {
WRITE_SEP();
itoa10<uint64_t>(summ.numAlnsPaired(), buf);
o.append("NH:i:");
o.append(buf);
} else if(flags.alignedUnpaired() || flags.alignedUnpairedMate()) {
WRITE_SEP();
itoa10<uint64_t>((flags.alignedUnpaired() || flags.readMate1()) ?
summ.numAlns1() : summ.numAlns2(), buf);
o.append("NH:i:");
o.append(buf);
}
}
bool snp_first = true;
index_t prev_snp_idx = INDEX_MAX;
size_t len_trimmed = rd.length() - res.trimmed5p(true) - res.trimmed3p(true);
if(!res.fw()) {
Edit::invertPoss(const_cast<EList<Edit>&>(res.ned()), len_trimmed, false);
}
for(size_t i = 0; i < res.ned().size(); i++) {
if(res.ned()[i].snpID >= altdb->alts().size())
continue;
index_t snp_idx = res.ned()[i].snpID;
assert_lt(snp_idx, altdb->alts().size());
const ALT<index_t>& snp = altdb->alts()[snp_idx];
const string& snpID = altdb->altnames()[snp_idx];
if(snp_idx == prev_snp_idx) continue;
if(snp_first) {
WRITE_SEP();
o.append("Zs:Z:");
}
if(!snp_first) o.append(",");
uint64_t pos = res.ned()[i].pos;
size_t j = i;
while(j > 0) {
if(res.ned()[j-1].snpID < altdb->alts().size()) {
const ALT<index_t>& snp2 = altdb->alts()[res.ned()[j-1].snpID];
if(snp2.type == ALT_SNP_SGL) {
pos -= (res.ned()[j-1].pos + 1);
} else if(snp2.type == ALT_SNP_DEL) {
pos -= res.ned()[j-1].pos;
} else if(snp2.type == ALT_SNP_INS) {
pos -= (res.ned()[j-1].pos + snp.len);
}
break;
}
j--;
}
itoa10<uint64_t>(pos, buf);
o.append(buf);
o.append("|");
if(snp.type == ALT_SNP_SGL) {
o.append("S");
} else if(snp.type == ALT_SNP_DEL) {
o.append("D");
} else {
assert_eq(snp.type, ALT_SNP_INS);
o.append("I");
}
o.append("|");
o.append(snpID.c_str());
if(snp_first) snp_first = false;
prev_snp_idx = snp_idx;
}
if(!res.fw()) {
Edit::invertPoss(const_cast<EList<Edit>&>(res.ned()), len_trimmed, false);
}
if(print_xr_) {
// Original read string
o.append("\n");
printOptFieldNewlineEscapedZ(o, rd.readOrigBuf);
}
}
template<typename index_t>
void SamConfig<index_t>::printAlignedOptFlags(
Alignment* newAlignment, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // the read
AlnRes& res, // individual alignment result
StackedAln& staln, // stacked alignment buffer
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metrics
const Scoring& sc, // scoring scheme
const char *mapqInp, // inputs to MAPQ calculation
const ALTDB<index_t>* altdb)
const
{
BTString &o = newAlignment->unChangedTags;
char buf[1024];
if(print_as_) {
// AS:i: Alignment score generated by aligner
//itoa10<TAlScore>(res.score().score(), buf);
newAlignment->AS = res.score().score();
}
// Do not output suboptimal alignment score, which conflicts with Cufflinks and StringTie
if(print_xs_) {
// XS:i: Suboptimal alignment score
// Use ZS:i: to avoid conflict with XS:A:
AlnScore sco = summ.secbestMate(rd.mate < 2);
if(sco.valid()) {
itoa10<TAlScore>(sco.score(), buf);
WRITE_SEP();
o.append("ZS:i:");
o.append(buf);
}
}
if(print_xn_) {
// XN:i: Number of ambiguous bases in the referenece
itoa10<size_t>(res.refNs(), buf);
WRITE_SEP();
o.append("XN:i:");
o.append(buf);
}
if(print_x0_) {
// X0:i: Number of best hits
}
if(print_x1_) {
// X1:i: Number of sub-optimal best hits
}
size_t num_mm = 0;
size_t num_go = 0;
size_t num_gx = 0;
for(size_t i = 0; i < res.ned().size(); i++) {
if(res.ned()[i].isMismatch()) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_mm++;
}
} else if(res.ned()[i].isReadGap()) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_go++;
num_gx++;
}
while(i < res.ned().size()-1 &&
res.ned()[i+1].pos == res.ned()[i].pos &&
res.ned()[i+1].isReadGap())
{
i++;
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_gx++;
}
}
} else if(res.ned()[i].isRefGap()) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_go++;
num_gx++;
}
while(i < res.ned().size()-1 &&
res.ned()[i+1].pos == res.ned()[i].pos+1 &&
res.ned()[i+1].isRefGap())
{
i++;
if(res.ned()[i].snpID >= altdb->alts().size()) {
num_gx++;
}
}
}
}
if(print_xm_) {
// XM:i: Number of mismatches in the alignment
//itoa10<size_t>(num_mm, buf);
/*WRITE_SEP();
o.append("XM:i:");
o.append(buf);*/
newAlignment->XM = num_mm;
}
if(print_xo_) {
// XO:i: Number of gap opens
itoa10<size_t>(num_go, buf);
WRITE_SEP();
o.append("XO:i:");
o.append(buf);
}
if(print_xg_) {
// XG:i: Number of gap extensions (incl. opens)
itoa10<size_t>(num_gx, buf);
WRITE_SEP();
o.append("XG:i:");
o.append(buf);
}
if(print_nm_) {
// NM:i: Edit dist. to the ref, Ns count, clipping doesn't
size_t NM = 0;
for(size_t i = 0; i < res.ned().size(); i++) {
if(res.ned()[i].type != EDIT_TYPE_SPL) {
if(res.ned()[i].snpID >= altdb->alts().size()) {
NM++;
}
}
}
newAlignment->NM = NM;
}
if(print_md_) {
// MD:Z: String for mms. [0-9]+(([A-Z]|\^[A-Z]+)[0-9]+)*2
/*WRITE_SEP();
o.append("MD:Z:");*/
staln.buildMdz();
staln.writeMdz(
&newAlignment->MD, // output buffer
NULL); // no char buffer
}
if(print_ys_ && summ.paired()) {
// YS:i: Alignment score of opposite mate
assert(res.oscore().valid());
newAlignment->YS = res.oscore().score();
}
if(print_yn_) {
// YN:i: Minimum valid score for this mate
TAlScore mn = sc.scoreMin.f<TAlScore>(rd.length());
itoa10<TAlScore>(mn, buf);
WRITE_SEP();
o.append("YN:i:");
o.append(buf);
// Yn:i: Perfect score for this mate
TAlScore pe = sc.perfectScore(rd.length());
itoa10<TAlScore>(pe, buf);
WRITE_SEP();
o.append("Yn:i:");
o.append(buf);
}
if(print_xss_) {
// Xs:i: Best invalid alignment score of this mate
bool one = true;
if(flags.partOfPair() && !flags.readMate1()) {
one = false;
}
TAlScore bst = one ? prm.bestLtMinscMate1 : prm.bestLtMinscMate2;
if(bst > std::numeric_limits<TAlScore>::min()) {
itoa10<TAlScore>(bst, buf);
WRITE_SEP();
o.append("Xs:i:");
o.append(buf);
}
if(flags.partOfPair()) {
// Ys:i: Best invalid alignment score of opposite mate
bst = one ? prm.bestLtMinscMate2 : prm.bestLtMinscMate1;
if(bst > std::numeric_limits<TAlScore>::min()) {
itoa10<TAlScore>(bst, buf);
WRITE_SEP();
o.append("Ys:i:");
o.append(buf);
}
}
}
if(print_zs_) {
// ZS:i: Pseudo-random seed for read
itoa10<uint32_t>(rd.seed, buf);
WRITE_SEP();
o.append("ZS:i:");
o.append(buf);
}
if(print_yt_ && !threeN) {
// YT:Z: String representing alignment type
WRITE_SEP();
flags.printYT(o);
}
if(print_yp_ && flags.partOfPair() && flags.canMax()) {
// YP:i: Read was repetitive when aligned paired?
WRITE_SEP();
flags.printYP(o);
}
if(print_ym_ && flags.canMax() && (flags.isMixedMode() || !flags.partOfPair())) {
// YM:i: Read was repetitive when aligned unpaired?
WRITE_SEP();
flags.printYM(o);
}
if(print_yf_ && flags.filtered()) {
// YF:i: Read was filtered?
first = flags.printYF(o, first) && first;
}
if(print_yi_) {
// Print MAPQ calibration info
if(mapqInp[0] != '\0') {
// YI:i: Suboptimal alignment score
WRITE_SEP();
o.append("YI:Z:");
o.append(mapqInp);
}
}
if(flags.partOfPair() && print_zp_) {
// ZP:i: Score of best concordant paired-end alignment
WRITE_SEP();
o.append("ZP:Z:");
if(summ.bestPaired().valid()) {
itoa10<TAlScore>(summ.bestPaired().score(), buf);
o.append(buf);
} else {
o.append("NA");
}
// Zp:i: Second-best concordant paired-end alignment score
WRITE_SEP();
o.append("Zp:Z:");
if(summ.secbestPaired().valid()) {
itoa10<TAlScore>(summ.secbestPaired().score(), buf);
o.append(buf);
} else {
o.append("NA");
}
}
if(print_zu_) {
// ZU:i: Score of best unpaired alignment
AlnScore best = (rd.mate <= 1 ? summ.best1() : summ.best2());
AlnScore secbest = (rd.mate <= 1 ? summ.secbest1() : summ.secbest2());
WRITE_SEP();
o.append("ZU:i:");
if(best.valid()) {
itoa10<TAlScore>(best.score(), buf);
o.append(buf);
} else {
o.append("NA");
}
// Zu:i: Score of second-best unpaired alignment
WRITE_SEP();
o.append("Zu:i:");
if(secbest.valid()) {
itoa10<TAlScore>(secbest.score(), buf);
o.append(buf);
} else {
o.append("NA");
}
}
if(!rgs_.empty()) {
WRITE_SEP();
o.append(rgs_.c_str());
}
if(print_xt_) {
// XT:i: Timing
WRITE_SEP();
struct timeval tv_end;
struct timezone tz_end;
gettimeofday(&tv_end, &tz_end);
size_t total_usecs =
(tv_end.tv_sec - prm.tv_beg.tv_sec) * 1000000 +
(tv_end.tv_usec - prm.tv_beg.tv_usec);
itoa10<size_t>(total_usecs, buf);
o.append("XT:i:");
o.append(buf);
}
if(print_xd_) {
// XD:i: Extend DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nExDps, buf);
o.append("XD:i:");
o.append(buf);
// Xd:i: Mate DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nMateDps, buf);
o.append("Xd:i:");
o.append(buf);
}
if(print_xu_) {
// XU:i: Extend ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nExUgs, buf);
o.append("XU:i:");
o.append(buf);
// Xu:i: Mate ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nMateUgs, buf);
o.append("Xu:i:");
o.append(buf);
}
if(print_ye_) {
// YE:i: Streak of failed DPs at end
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFail, buf);
o.append("YE:i:");
o.append(buf);
// Ye:i: Streak of failed ungaps at end
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFail, buf);
o.append("Ye:i:");
o.append(buf);
}
if(print_yl_) {
// YL:i: Longest streak of failed DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFailStreak, buf);
o.append("YL:i:");
o.append(buf);
// Yl:i: Longest streak of failed ungaps
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFailStreak, buf);
o.append("Yl:i:");
o.append(buf);
}
if(print_yu_) {
// YU:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nDpLastSucc, buf);
o.append("YU:i:");
o.append(buf);
// Yu:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nUgLastSucc, buf);
o.append("Yu:i:");
o.append(buf);
}
if(print_xp_) {
// XP:Z: String describing seed hits
WRITE_SEP();
o.append("XP:B:I,");
itoa10<uint64_t>(prm.nSeedElts, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsFw, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsRc, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMean, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMedian, buf);
o.append(buf);
}
if(print_yr_) {
// YR:i: Redundant seed hits
WRITE_SEP();
itoa10<uint64_t>(prm.nRedundants, buf);
o.append("YR:i:");
o.append(buf);
}
if(print_zb_) {
// ZB:i: Ftab ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nFtabs, buf);
o.append("ZB:i:");
o.append(buf);
}
if(print_zr_) {
// ZR:Z: Redundant path skips in seed alignment
WRITE_SEP();
o.append("ZR:Z:");
itoa10<uint64_t>(prm.nRedSkip, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedFail, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedIns, buf); o.append(buf);
}
if(print_zf_) {
// ZF:i: FM Index ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nSdFmops, buf);
o.append("ZF:i:");
o.append(buf);
// Zf:i: FM Index ops for offset resolution
WRITE_SEP();
itoa10<uint64_t>(prm.nExFmops, buf);
o.append("Zf:i:");
o.append(buf);
}
if(print_zm_) {
// ZM:Z: Print FM index op string for best-first search
WRITE_SEP();
o.append("ZM:Z:");
prm.fmString.print(o, buf);
}
if(print_zi_) {
// ZI:i: Seed extend loop iterations
WRITE_SEP();
itoa10<uint64_t>(prm.nExIters, buf);
o.append("ZI:i:");
o.append(buf);
}
if(print_xs_a_) {
if(rna_strandness_ == RNA_STRANDNESS_UNKNOWN) {
uint8_t whichsense = res.spliced_whichsense_transcript();
if(whichsense != SPL_UNKNOWN) {
WRITE_SEP();
o.append("XS:A:");
if(whichsense == SPL_FW || whichsense == SPL_SEMI_FW) {
o.append('+');
} else {
assert(whichsense == SPL_RC || whichsense == SPL_SEMI_RC);
o.append('-');
}
}
} else {
WRITE_SEP();
o.append("XS:A:");
char strandness = '+';
if(res.readMate1()) {
if(res.orient()) {
if(rna_strandness_ == RNA_STRANDNESS_R || rna_strandness_ == RNA_STRANDNESS_RF) {
strandness = '-';
}
} else {
if(rna_strandness_ == RNA_STRANDNESS_F || rna_strandness_ == RNA_STRANDNESS_FR) {
strandness = '-';
}
}
} else {
assert(res.readMate2());
assert(rna_strandness_ == RNA_STRANDNESS_FR || rna_strandness_ == RNA_STRANDNESS_RF);
if(res.orient()) {
if(rna_strandness_ == RNA_STRANDNESS_FR) {
strandness = '-';
}
} else {
if(rna_strandness_ == RNA_STRANDNESS_RF) {
strandness = '-';
}
}
}
o.append(strandness);
}
}
if(print_nh_) {
if(flags.alignedPaired()) {
/*WRITE_SEP();
itoa10<uint64_t>(summ.numAlnsPaired(), buf);
o.append("NH:i:");
o.append(buf);*/
newAlignment->NH = summ.numAlnsPaired();
} else if(flags.alignedUnpaired() || flags.alignedUnpairedMate()) {
/*WRITE_SEP();
itoa10<uint64_t>((flags.alignedUnpaired() || flags.readMate1()) ?
summ.numAlns1() : summ.numAlns2(), buf);
o.append("NH:i:");
o.append(buf);*/
newAlignment->NH = (flags.alignedUnpaired() || flags.readMate1()) ? summ.numAlns1() : summ.numAlns2();
}
}
bool snp_first = true;
index_t prev_snp_idx = INDEX_MAX;
size_t len_trimmed = rd.length() - res.trimmed5p(true) - res.trimmed3p(true);
if(!res.fw()) {
Edit::invertPoss(const_cast<EList<Edit>&>(res.ned()), len_trimmed, false);
}
for(size_t i = 0; i < res.ned().size(); i++) {
if(res.ned()[i].snpID >= altdb->alts().size())
continue;
index_t snp_idx = res.ned()[i].snpID;
assert_lt(snp_idx, altdb->alts().size());
const ALT<index_t>& snp = altdb->alts()[snp_idx];
const string& snpID = altdb->altnames()[snp_idx];
if(snp_idx == prev_snp_idx) continue;
if(snp_first) {
WRITE_SEP();
o.append("Zs:Z:");
}
if(!snp_first) o.append(",");
uint64_t pos = res.ned()[i].pos;
size_t j = i;
while(j > 0) {
if(res.ned()[j-1].snpID < altdb->alts().size()) {
const ALT<index_t>& snp2 = altdb->alts()[res.ned()[j-1].snpID];
if(snp2.type == ALT_SNP_SGL) {
pos -= (res.ned()[j-1].pos + 1);
} else if(snp2.type == ALT_SNP_DEL) {
pos -= res.ned()[j-1].pos;
} else if(snp2.type == ALT_SNP_INS) {
pos -= (res.ned()[j-1].pos + snp.len);
}
break;
}
j--;
}
itoa10<uint64_t>(pos, buf);
o.append(buf);
o.append("|");
if(snp.type == ALT_SNP_SGL) {
o.append("S");
} else if(snp.type == ALT_SNP_DEL) {
o.append("D");
} else {
assert_eq(snp.type, ALT_SNP_INS);
o.append("I");
}
o.append("|");
o.append(snpID.c_str());
if(snp_first) snp_first = false;
prev_snp_idx = snp_idx;
}
if(!res.fw()) {
Edit::invertPoss(const_cast<EList<Edit>&>(res.ned()), len_trimmed, false);
}
if(print_xr_) {
// Original read string
newAlignment->passThroughLine.append("\n");
printOptFieldNewlineEscapedZ(newAlignment->passThroughLine, rd.readOrigBuf);
}
}
/**
* Print the optional flags to the given string.
*/
template<typename index_t>
void SamConfig<index_t>::printEmptyOptFlags(
BTString& o, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // read
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metrics
const Scoring& sc) // scoring scheme
const
{
char buf[1024];
if(print_yn_) {
// YN:i: Minimum valid score for this mate
TAlScore mn = sc.scoreMin.f<TAlScore>(rd.length());
itoa10<TAlScore>(mn, buf);
WRITE_SEP();
o.append("YN:i:");
o.append(buf);
// Yn:i: Perfect score for this mate
TAlScore pe = sc.perfectScore(rd.length());
itoa10<TAlScore>(pe, buf);
WRITE_SEP();
o.append("Yn:i:");
o.append(buf);
}
if(print_zs_) {
// ZS:i: Pseudo-random seed for read
itoa10<uint32_t>(rd.seed, buf);
WRITE_SEP();
o.append("ZS:i:");
o.append(buf);
}
if(print_yt_&& !threeN) {
// YT:Z: String representing alignment type
WRITE_SEP();
flags.printYT(o);
}
if(print_yp_ && flags.partOfPair() && flags.canMax()) {
// YP:i: Read was repetitive when aligned paired?
WRITE_SEP();
flags.printYP(o);
}
if(print_ym_ && flags.canMax() && (flags.isMixedMode() || !flags.partOfPair())) {
// YM:i: Read was repetitive when aligned unpaired?
WRITE_SEP();
flags.printYM(o);
}
if(print_yf_ && flags.filtered()) {
// YM:i: Read was repetitive when aligned unpaired?
first = flags.printYF(o, first) && first;
}
if(!rgs_.empty()) {
WRITE_SEP();
o.append(rgs_.c_str());
}
if(print_xt_) {
// XT:i: Timing
WRITE_SEP();
struct timeval tv_end;
struct timezone tz_end;
gettimeofday(&tv_end, &tz_end);
size_t total_usecs =
(tv_end.tv_sec - prm.tv_beg.tv_sec) * 1000000 +
(tv_end.tv_usec - prm.tv_beg.tv_usec);
itoa10<size_t>(total_usecs, buf);
o.append("XT:i:");
o.append(buf);
}
if(print_xd_) {
// XD:i: Extend DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nExDps, buf);
o.append("XD:i:");
o.append(buf);
// Xd:i: Mate DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nMateDps, buf);
o.append("Xd:i:");
o.append(buf);
}
if(print_xu_) {
// XU:i: Extend ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nExUgs, buf);
o.append("XU:i:");
o.append(buf);
// Xu:i: Mate ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nMateUgs, buf);
o.append("Xu:i:");
o.append(buf);
}
if(print_ye_) {
// YE:i: Streak of failed DPs at end
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFail, buf);
o.append("YE:i:");
o.append(buf);
// Ye:i: Streak of failed ungaps at end
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFail, buf);
o.append("Ye:i:");
o.append(buf);
}
if(print_yl_) {
// YL:i: Longest streak of failed DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFailStreak, buf);
o.append("YL:i:");
o.append(buf);
// Yl:i: Longest streak of failed ungaps
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFailStreak, buf);
o.append("Yl:i:");
o.append(buf);
}
if(print_yu_) {
// YU:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nDpLastSucc, buf);
o.append("YU:i:");
o.append(buf);
// Yu:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nUgLastSucc, buf);
o.append("Yu:i:");
o.append(buf);
}
if(print_xp_) {
// XP:Z: String describing seed hits
WRITE_SEP();
o.append("XP:B:I,");
itoa10<uint64_t>(prm.nSeedElts, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsFw, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsRc, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMean, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMedian, buf);
o.append(buf);
}
if(print_yr_) {
// YR:i: Redundant seed hits
WRITE_SEP();
itoa10<uint64_t>(prm.nRedundants, buf);
o.append("YR:i:");
o.append(buf);
}
if(print_zb_) {
// ZB:i: Ftab ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nFtabs, buf);
o.append("ZB:i:");
o.append(buf);
}
if(print_zr_) {
// ZR:Z: Redundant path skips in seed alignment
WRITE_SEP();
o.append("ZR:Z:");
itoa10<uint64_t>(prm.nRedSkip, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedFail, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedIns, buf); o.append(buf);
}
if(print_zf_) {
// ZF:i: FM Index ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nSdFmops, buf);
o.append("ZF:i:");
o.append(buf);
// Zf:i: FM Index ops for offset resolution
WRITE_SEP();
itoa10<uint64_t>(prm.nExFmops, buf);
o.append("Zf:i:");
o.append(buf);
}
if(print_zm_) {
// ZM:Z: Print FM index op string for best-first search
WRITE_SEP();
o.append("ZM:Z:");
prm.fmString.print(o, buf);
}
if(print_zi_) {
// ZI:i: Seed extend loop iterations
WRITE_SEP();
itoa10<uint64_t>(prm.nExIters, buf);
o.append("ZI:i:");
o.append(buf);
}
if(print_xr_) {
// Original read string
o.append("\n");
printOptFieldNewlineEscapedZ(o, rd.readOrigBuf);
}
}
/**
* Print the optional flags to the given string. This function is for HISAT-3N.
*/
template<typename index_t>
void SamConfig<index_t>::printEmptyOptFlags(
Alignment* newAlignment, // output buffer
bool first, // first opt flag printed is first overall?
const Read& rd, // read
const AlnFlags& flags, // alignment flags
const AlnSetSumm& summ, // summary of alignments for this read
const SeedAlSumm& ssm, // seed alignment summary
const PerReadMetrics& prm, // per-read metrics
const Scoring& sc) // scoring scheme
const
{
char buf[1024];
BTString &o = newAlignment->unChangedTags;
if(print_yn_) {
// YN:i: Minimum valid score for this mate
TAlScore mn = sc.scoreMin.f<TAlScore>(rd.length());
itoa10<TAlScore>(mn, buf);
WRITE_SEP();
o.append("YN:i:");
o.append(buf);
// Yn:i: Perfect score for this mate
TAlScore pe = sc.perfectScore(rd.length());
itoa10<TAlScore>(pe, buf);
WRITE_SEP();
o.append("Yn:i:");
o.append(buf);
}
if(print_zs_) {
// ZS:i: Pseudo-random seed for read
itoa10<uint32_t>(rd.seed, buf);
WRITE_SEP();
o.append("ZS:i:");
o.append(buf);
}
if(print_yt_&& !threeN) {
// YT:Z: String representing alignment type
WRITE_SEP();
flags.printYT(o);
}
if(print_yp_ && flags.partOfPair() && flags.canMax()) {
// YP:i: Read was repetitive when aligned paired?
WRITE_SEP();
flags.printYP(o);
}
if(print_ym_ && flags.canMax() && (flags.isMixedMode() || !flags.partOfPair())) {
// YM:i: Read was repetitive when aligned unpaired?
WRITE_SEP();
flags.printYM(o);
}
if(print_yf_ && flags.filtered()) {
// YM:i: Read was repetitive when aligned unpaired?
first = flags.printYF(o, first) && first;
}
if(!rgs_.empty()) {
WRITE_SEP();
o.append(rgs_.c_str());
}
if(print_xt_) {
// XT:i: Timing
WRITE_SEP();
struct timeval tv_end;
struct timezone tz_end;
gettimeofday(&tv_end, &tz_end);
size_t total_usecs =
(tv_end.tv_sec - prm.tv_beg.tv_sec) * 1000000 +
(tv_end.tv_usec - prm.tv_beg.tv_usec);
itoa10<size_t>(total_usecs, buf);
o.append("XT:i:");
o.append(buf);
}
if(print_xd_) {
// XD:i: Extend DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nExDps, buf);
o.append("XD:i:");
o.append(buf);
// Xd:i: Mate DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nMateDps, buf);
o.append("Xd:i:");
o.append(buf);
}
if(print_xu_) {
// XU:i: Extend ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nExUgs, buf);
o.append("XU:i:");
o.append(buf);
// Xu:i: Mate ungapped tries
WRITE_SEP();
itoa10<uint64_t>(prm.nMateUgs, buf);
o.append("Xu:i:");
o.append(buf);
}
if(print_ye_) {
// YE:i: Streak of failed DPs at end
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFail, buf);
o.append("YE:i:");
o.append(buf);
// Ye:i: Streak of failed ungaps at end
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFail, buf);
o.append("Ye:i:");
o.append(buf);
}
if(print_yl_) {
// YL:i: Longest streak of failed DPs
WRITE_SEP();
itoa10<uint64_t>(prm.nDpFailStreak, buf);
o.append("YL:i:");
o.append(buf);
// Yl:i: Longest streak of failed ungaps
WRITE_SEP();
itoa10<uint64_t>(prm.nUgFailStreak, buf);
o.append("Yl:i:");
o.append(buf);
}
if(print_yu_) {
// YU:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nDpLastSucc, buf);
o.append("YU:i:");
o.append(buf);
// Yu:i: Index of last succesful DP
WRITE_SEP();
itoa10<uint64_t>(prm.nUgLastSucc, buf);
o.append("Yu:i:");
o.append(buf);
}
if(print_xp_) {
// XP:Z: String describing seed hits
WRITE_SEP();
o.append("XP:B:I,");
itoa10<uint64_t>(prm.nSeedElts, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsFw, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nSeedEltsRc, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMean, buf);
o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.seedMedian, buf);
o.append(buf);
}
if(print_yr_) {
// YR:i: Redundant seed hits
WRITE_SEP();
itoa10<uint64_t>(prm.nRedundants, buf);
o.append("YR:i:");
o.append(buf);
}
if(print_zb_) {
// ZB:i: Ftab ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nFtabs, buf);
o.append("ZB:i:");
o.append(buf);
}
if(print_zr_) {
// ZR:Z: Redundant path skips in seed alignment
WRITE_SEP();
o.append("ZR:Z:");
itoa10<uint64_t>(prm.nRedSkip, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedFail, buf); o.append(buf);
o.append(',');
itoa10<uint64_t>(prm.nRedIns, buf); o.append(buf);
}
if(print_zf_) {
// ZF:i: FM Index ops for seed alignment
WRITE_SEP();
itoa10<uint64_t>(prm.nSdFmops, buf);
o.append("ZF:i:");
o.append(buf);
// Zf:i: FM Index ops for offset resolution
WRITE_SEP();
itoa10<uint64_t>(prm.nExFmops, buf);
o.append("Zf:i:");
o.append(buf);
}
if(print_zm_) {
// ZM:Z: Print FM index op string for best-first search
WRITE_SEP();
o.append("ZM:Z:");
prm.fmString.print(o, buf);
}
if(print_zi_) {
// ZI:i: Seed extend loop iterations
WRITE_SEP();
itoa10<uint64_t>(prm.nExIters, buf);
o.append("ZI:i:");
o.append(buf);
}
if(print_xr_) {
// Original read string
newAlignment->passThroughLine.append("\n");
printOptFieldNewlineEscapedZ(newAlignment->passThroughLine, rd.readOrigBuf);
}
}
#endif /* SAM_H_ */