126 lines
3.4 KiB
C++
126 lines
3.4 KiB
C++
/*
|
|
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
|
|
*
|
|
* This file is part of Bowtie 2.
|
|
*
|
|
* Bowtie 2 is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Bowtie 2 is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef SIMPLE_FUNC_H_
|
|
#define SIMPLE_FUNC_H_
|
|
|
|
#include <math.h>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include "tokenize.h"
|
|
|
|
#define SIMPLE_FUNC_CONST 1
|
|
#define SIMPLE_FUNC_LINEAR 2
|
|
#define SIMPLE_FUNC_SQRT 3
|
|
#define SIMPLE_FUNC_LOG 4
|
|
|
|
/**
|
|
* A simple function of one argument, parmeterized by I, X, C and L: min
|
|
* value, max value, constant term, and coefficient respectively:
|
|
*
|
|
* 1. Constant: f(x) = max(I, min(X, C + L * 0))
|
|
* 2. Linear: f(x) = max(I, min(X, C + L * x))
|
|
* 3. Square root: f(x) = max(I, min(X, C + L * sqrt(x)))
|
|
* 4. Log: f(x) = max(I, min(X, C + L * ln(x)))
|
|
*
|
|
* Clearly, the return value of the Constant function doesn't depend on x.
|
|
*/
|
|
class SimpleFunc {
|
|
|
|
public:
|
|
|
|
SimpleFunc() : type_(0), I_(0.0), X_(0.0), C_(0.0), L_(0.0) { }
|
|
|
|
SimpleFunc(int type, double I, double X, double C, double L) {
|
|
init(type, I, X, C, L);
|
|
}
|
|
|
|
void init(int type, double I, double X, double C, double L) {
|
|
type_ = type; I_ = I; X_ = X; C_ = C; L_ = L;
|
|
}
|
|
|
|
void init(int type, double C, double L) {
|
|
type_ = type; C_ = C; L_ = L;
|
|
I_ = -std::numeric_limits<double>::max();
|
|
X_ = std::numeric_limits<double>::max();
|
|
}
|
|
|
|
void setType (int type ) { type_ = type; }
|
|
void setMin (double mn) { I_ = mn; }
|
|
void setMax (double mx) { X_ = mx; }
|
|
void setConst(double co) { C_ = co; }
|
|
void setCoeff(double ce) { L_ = ce; }
|
|
|
|
int getType () const { return type_; }
|
|
double getMin () const { return I_; }
|
|
double getMax () const { return X_; }
|
|
double getConst() const { return C_; }
|
|
double getCoeff() const { return L_; }
|
|
|
|
void mult(double x) {
|
|
if(I_ < std::numeric_limits<double>::max()) {
|
|
I_ *= x; X_ *= x; C_ *= x; L_ *= x;
|
|
}
|
|
}
|
|
|
|
bool initialized() const { return type_ != 0; }
|
|
void reset() { type_ = 0; }
|
|
|
|
template<typename T>
|
|
T f(double x) const {
|
|
assert(type_ >= SIMPLE_FUNC_CONST && type_ <= SIMPLE_FUNC_LOG);
|
|
double X;
|
|
if(type_ == SIMPLE_FUNC_CONST) {
|
|
X = 0.0;
|
|
} else if(type_ == SIMPLE_FUNC_LINEAR) {
|
|
X = x;
|
|
} else if(type_ == SIMPLE_FUNC_SQRT) {
|
|
X = sqrt(x);
|
|
} else if(type_ == SIMPLE_FUNC_LOG) {
|
|
X = log(x);
|
|
} else {
|
|
throw 1;
|
|
}
|
|
double ret = std::max(I_, std::min(X_, C_ + L_ * X));
|
|
if(ret == std::numeric_limits<double>::max()) {
|
|
return std::numeric_limits<T>::max();
|
|
} else if(ret == std::numeric_limits<double>::min()) {
|
|
return std::numeric_limits<T>::min();
|
|
} else {
|
|
return (T)ret;
|
|
}
|
|
}
|
|
|
|
static int parseType(const std::string& otype);
|
|
|
|
static SimpleFunc parse(
|
|
const std::string& s,
|
|
double defaultConst = 0.0,
|
|
double defaultLinear = 0.0,
|
|
double defaultMin = 0.0,
|
|
double defaultMax = std::numeric_limits<double>::max());
|
|
|
|
protected:
|
|
|
|
int type_;
|
|
double I_, X_, C_, L_;
|
|
};
|
|
|
|
#endif /*ndef SIMPLE_FUNC_H_*/
|