initial commit

This commit is contained in:
Yaossg 2025-10-13 00:21:24 +08:00
commit 65e8377d9e
4 changed files with 345 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
slime
slime-cuda

10
Makefile Normal file
View file

@ -0,0 +1,10 @@
all: slime slime-cuda
slime: slime.cpp
g++ -o slime slime.cpp -O3 -std=c++17
slime-cuda: slime.cu
nvcc -o slime-cuda slime.cu -O3 -std=c++17
clean:
rm -f slime slime-cuda

156
slime.cpp Normal file
View file

@ -0,0 +1,156 @@
// part 1: header
#include <cstdint>
struct JavaRandom {
int64_t seed;
JavaRandom(int64_t seed) : seed((seed ^ 0x5DEECE66DLL) & ((1LL << 48) - 1)) {}
int32_t next(int bits) {
seed = (seed * 0x5DEECE66DLL + 0xBLL) & ((1LL << 48) - 1);
return (int32_t)((uint64_t)seed >> (48 - bits));
}
int32_t nextInt(int32_t n) {
if ((n & -n) == n) // n is a power of 2
return (int32_t)((n * (int64_t)next(31)) >> 31);
int32_t bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
};
bool isSlimeChunk(int64_t worldSeed, int32_t chunkX, int32_t chunkZ) {
int64_t seed = worldSeed +
(int64_t)(chunkX * chunkX * 4987142) +
(int64_t)(chunkX * 5947611) +
(int64_t)(chunkZ * chunkZ) * 4392871LL +
(int64_t)(chunkZ * 389711) ^ 987234911LL;
JavaRandom rand(seed);
return rand.nextInt(10) == 0;
}
bool isSlimeChunkNxN(int64_t worldSeed, int32_t n, int32_t d, int32_t startX, int32_t startZ) {
int count = n * n;
for (int32_t x = 0; x < n; ++x) {
for (int32_t z = 0; z < n; ++z) {
count -= !isSlimeChunk(worldSeed, startX + x, startZ + z);
if (count < d) {
return false;
}
}
}
return true;
}
// part 2: main
#include <iostream>
#include <atomic>
#include <thread>
#include <vector>
#include <chrono>
std::atomic<int64_t> foundSeeds(0);
bool checkSingleSeed(int64_t seed, int32_t n, int32_t d, int32_t radius) {
for (int32_t x = -radius; x <= radius; ++x) {
for (int32_t z = -radius; z <= radius; ++z) {
if (isSlimeChunkNxN(seed, n, d, x, z)) {
printf("found seed: %ld, at (%d, %d)\n", seed, x, z);
foundSeeds.fetch_add(1, std::memory_order_relaxed);
}
}
}
return false;
}
void checkSeeds(int64_t startSeed, int64_t endSeed, int32_t n, int32_t d, int32_t radius) {
for (int64_t seed = startSeed; seed < endSeed; ++seed) {
checkSingleSeed(seed, n, d, radius);
}
}
struct Args {
int64_t startSeed = 0;
int64_t endSeed = 1'000'000;
int numThreads = std::thread::hardware_concurrency();
int chunkSize = 3;
int numChunks = 9;
int radius = 100;
};
[[noreturn]] void help(int exitCode = 1) {
std::cerr << "Usage: slime [args...]" << std::endl;
std::cerr << " -s <startSeed> Starting seed (default: 0)" << std::endl;
std::cerr << " -e <endSeed> Ending seed (default: 1000000)" << std::endl;
std::cerr << " -p <numThreads> Number of threads to use (default: number of CPU cores)" << std::endl;
std::cerr << " -n <chunkSize> Size of the slime chunk area to check (default: 3)" << std::endl;
std::cerr << " -d <numChunks> Number of chunks within square of chunkSize to check (default: square of chunkSize)" << std::endl;
std::cerr << " -r <radius> Radius of chunks around (0, 0) to check (default: 100)" << std::endl;
exit(exitCode);
}
Args parseArgs(int argc, char* argv[]) {
Args args;
if (argc == 2 && std::string(argv[1]) == "--help") {
help(0);
}
bool setNumChunks = false;
for (int i = 1; i < argc; i += 2) {
if (std::string(argv[i]) == "-s") {
args.startSeed = std::stoll(argv[i + 1]);
} else if (std::string(argv[i]) == "-e") {
args.endSeed = std::stoll(argv[i + 1]);
} else if (std::string(argv[i]) == "-p") {
args.numThreads = std::stoi(argv[i + 1]);
} else if (std::string(argv[i]) == "-n") {
args.chunkSize = std::stoi(argv[i + 1]);
} else if (std::string(argv[i]) == "-d") {
args.numChunks = std::stoi(argv[i + 1]);
setNumChunks = true;
} else if (std::string(argv[i]) == "-r") {
args.radius = std::stoi(argv[i + 1]);
} else {
help();
}
}
if (!setNumChunks) {
args.numChunks = args.chunkSize * args.chunkSize;
}
if (args.startSeed < args.endSeed && args.numThreads > 0 && args.chunkSize > 0 && args.numChunks > 0 && args.numChunks <= args.chunkSize * args.chunkSize && args.radius > 0) {
return args;
}
help();
}
int main(int argc, char* argv[]) {
auto [startSeed, endSeed, numThreads, n, d, radius] = parseArgs(argc, argv);
std::cout << "Searching for seeds with at least " << d << " slime chunks within " << n << "x" << n << " chunks within a radius of " << radius << "." << std::endl;
std::cout << "Checking seeds from " << startSeed << " to " << endSeed << " with " << numThreads << " threads." << std::endl;
auto startTime = std::chrono::high_resolution_clock::now();
auto totalSeeds = endSeed - startSeed;
std::vector<std::thread> threads;
int64_t seedsPerThread = totalSeeds / numThreads;
for (int i = 0; i < numThreads; ++i) {
int64_t startSeed = i * seedsPerThread;
int64_t endSeed = (i == numThreads - 1) ? totalSeeds : startSeed + seedsPerThread;
threads.emplace_back(checkSeeds, startSeed, endSeed, n, d, radius);
}
for (auto& t : threads) {
t.join();
}
auto endTime = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = endTime - startTime;
std::cout << "It took " << elapsed.count() << " seconds to check " << totalSeeds << " seeds, found " << foundSeeds.load() << " seeds that meet the condition." << std::endl;
return 0;
}

177
slime.cu Normal file
View file

@ -0,0 +1,177 @@
// part 1: header
#include <cstdint>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <stdio.h>
struct JavaRandom {
int64_t seed;
__device__ JavaRandom(int64_t seed) : seed((seed ^ 0x5DEECE66DLL) & ((1LL << 48) - 1)) {}
__device__ int32_t next(int bits) {
seed = (seed * 0x5DEECE66DLL + 0xBLL) & ((1LL << 48) - 1);
return (int32_t)((uint64_t)seed >> (48 - bits));
}
__device__ int32_t nextInt(int32_t n) {
if ((n & -n) == n) // n is a power of 2
return (int32_t)((n * (int64_t)next(31)) >> 31);
int32_t bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
};
__device__ bool isSlimeChunk(int64_t worldSeed, int32_t chunkX, int32_t chunkZ) {
int64_t seed = worldSeed +
(int64_t)(chunkX * chunkX * 4987142) +
(int64_t)(chunkX * 5947611) +
(int64_t)(chunkZ * chunkZ) * 4392871LL +
(int64_t)(chunkZ * 389711) ^ 987234911LL;
JavaRandom rand(seed);
return rand.nextInt(10) == 0;
}
__device__ bool isSlimeChunkNxN(int64_t worldSeed, int32_t n, int32_t d, int32_t startX, int32_t startZ) {
int count = n * n;
for (int32_t x = 0; x < n; ++x) {
for (int32_t z = 0; z < n; ++z) {
count -= !isSlimeChunk(worldSeed, startX + x, startZ + z);
if (count < d) {
return false;
}
}
}
return true;
}
__device__ bool checkSingleSeed(int64_t seed, int32_t n, int32_t d, int32_t radius) {
for (int32_t x = -radius; x <= radius; ++x) {
for (int32_t z = -radius; z <= radius; ++z) {
if (isSlimeChunkNxN(seed, n, d, x, z)) {
printf("found seed: %lld, at (%d, %d)\n", seed, x, z);
return true;
}
}
}
return false;
}
// part 2: main
#include <iostream>
#include <chrono>
__global__ void checkSeedsKernel(int64_t startSeed, int32_t n, int32_t d, int32_t radius, int* foundCount) {
int64_t seed = startSeed + blockIdx.x * blockDim.x + threadIdx.x;
atomicAdd(foundCount, checkSingleSeed(seed, n, d, radius));
}
struct Args {
int64_t startSeed = 0;
int64_t endSeed = 1'000'000;
int chunkSize = 3;
int numChunks = 9;
int radius = 100;
};
[[noreturn]] void help(int exitCode = 1) {
std::cerr << "Usage: slime [args...]" << std::endl;
std::cerr << " -s <startSeed> Starting seed (default: 0)" << std::endl;
std::cerr << " -e <endSeed> Ending seed (default: 1000000)" << std::endl;
std::cerr << " -n <chunkSize> Size of the slime chunk area to check (default: 3)" << std::endl;
std::cerr << " -d <numChunks> Number of chunks within square of chunkSize to check (default: square of chunkSize)" << std::endl;
std::cerr << " -r <radius> Radius of chunks around (0, 0) to check (default: 100)" << std::endl;
exit(exitCode);
}
Args parseArgs(int argc, char* argv[]) {
Args args;
if (argc == 2 && std::string(argv[1]) == "--help") {
help(0);
}
bool setNumChunks = false;
for (int i = 1; i < argc; i += 2) {
if (std::string(argv[i]) == "-s") {
args.startSeed = std::stoll(argv[i + 1]);
} else if (std::string(argv[i]) == "-e") {
args.endSeed = std::stoll(argv[i + 1]);
} else if (std::string(argv[i]) == "-n") {
args.chunkSize = std::stoi(argv[i + 1]);
} else if (std::string(argv[i]) == "-d") {
args.numChunks = std::stoi(argv[i + 1]);
setNumChunks = true;
} else if (std::string(argv[i]) == "-r") {
args.radius = std::stoi(argv[i + 1]);
} else {
help();
}
}
if (!setNumChunks) {
args.numChunks = args.chunkSize * args.chunkSize;
}
if (args.startSeed < args.endSeed && args.chunkSize > 0 && args.radius > 0) {
return args;
}
help();
}
void execute(int64_t startSeed, int64_t endSeed, int32_t n, int32_t d, int32_t radius, int* d_foundCount) {
int threadsPerBlock = 64;
int blocks = (endSeed - startSeed + threadsPerBlock - 1) / threadsPerBlock;
checkSeedsKernel<<<blocks, threadsPerBlock>>>(startSeed, n, d, radius, d_foundCount);
cudaDeviceSynchronize();
}
void renderProgressBar(double progress) {
int barWidth = 50;
std::cout << "[";
int pos = static_cast<int>(barWidth * progress);
for (int i = 0; i <= barWidth; ++i) {
if (i < pos) std::cout << "=";
else if (i == pos) std::cout << ">";
else std::cout << " ";
}
std::cout << "] " << int(progress * 100.0) << " %\r";
std::cout.flush();
}
int main(int argc, char* argv[]) {
auto [startSeed, endSeed, n, d, radius] = parseArgs(argc, argv);
std::cout << "Searching for seeds with at least " << d << " slime chunks within " << n << "x" << n << " chunks within a radius of " << radius << "." << std::endl;
std::cout << "Checking seeds from " << startSeed << " to " << endSeed << " with CUDA." << std::endl;
auto startTime = std::chrono::high_resolution_clock::now();
auto totalSeeds = endSeed - startSeed;
int* d_foundCount;
int h_foundCount = 0;
cudaMalloc(&d_foundCount, sizeof(int));
cudaMemcpy(d_foundCount, &h_foundCount, sizeof(int), cudaMemcpyHostToDevice);
int64_t batchSize = std::max((endSeed - startSeed) / 100, int64_t(1'000'000));
renderProgressBar(0);
for (int64_t seed = startSeed; seed < endSeed; seed += batchSize) {
int64_t batchEnd = std::min(seed + batchSize, endSeed);
execute(seed, batchEnd, n, d, radius, d_foundCount);
renderProgressBar(double(batchEnd - startSeed) / totalSeeds);
}
std::cout << std::endl;
cudaMemcpy(&h_foundCount, d_foundCount, sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(d_foundCount);
auto endTime = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = endTime - startTime;
std::cout << "It took " << elapsed.count() << " seconds to check " << totalSeeds << " seeds, found " << h_foundCount << " seeds that meet the condition." << std::endl;
}