156 lines
No EOL
5.5 KiB
C++
156 lines
No EOL
5.5 KiB
C++
// part 1: header
|
|
#include <cstdint>
|
|
|
|
struct JavaRandom {
|
|
int64_t seed;
|
|
|
|
JavaRandom(int64_t seed) : seed((seed ^ 0x5DEECE66DLL) & ((1LL << 48) - 1)) {}
|
|
|
|
int32_t next(int bits) {
|
|
seed = (seed * 0x5DEECE66DLL + 0xBLL) & ((1LL << 48) - 1);
|
|
return (int32_t)((uint64_t)seed >> (48 - bits));
|
|
}
|
|
|
|
int32_t nextInt(int32_t n) {
|
|
if ((n & -n) == n) // n is a power of 2
|
|
return (int32_t)((n * (int64_t)next(31)) >> 31);
|
|
|
|
int32_t bits, val;
|
|
do {
|
|
bits = next(31);
|
|
val = bits % n;
|
|
} while (bits - val + (n - 1) < 0);
|
|
return val;
|
|
|
|
}
|
|
};
|
|
|
|
bool isSlimeChunk(int64_t worldSeed, int32_t chunkX, int32_t chunkZ) {
|
|
int64_t seed = worldSeed +
|
|
(int64_t)(chunkX * chunkX * 4987142) +
|
|
(int64_t)(chunkX * 5947611) +
|
|
(int64_t)(chunkZ * chunkZ) * 4392871LL +
|
|
(int64_t)(chunkZ * 389711) ^ 987234911LL;
|
|
JavaRandom rand(seed);
|
|
return rand.nextInt(10) == 0;
|
|
}
|
|
|
|
bool isSlimeChunkNxN(int64_t worldSeed, int32_t n, int32_t d, int32_t startX, int32_t startZ) {
|
|
int count = n * n;
|
|
for (int32_t x = 0; x < n; ++x) {
|
|
for (int32_t z = 0; z < n; ++z) {
|
|
count -= !isSlimeChunk(worldSeed, startX + x, startZ + z);
|
|
if (count < d) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// part 2: main
|
|
|
|
#include <iostream>
|
|
#include <atomic>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <chrono>
|
|
|
|
std::atomic<int64_t> foundSeeds(0);
|
|
|
|
bool checkSingleSeed(int64_t seed, int32_t n, int32_t d, int32_t radius) {
|
|
for (int32_t x = -radius; x <= radius; ++x) {
|
|
for (int32_t z = -radius; z <= radius; ++z) {
|
|
if (isSlimeChunkNxN(seed, n, d, x, z)) {
|
|
printf("found seed: %ld, at (%d, %d)\n", seed, x, z);
|
|
foundSeeds.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void checkSeeds(int64_t startSeed, int64_t endSeed, int32_t n, int32_t d, int32_t radius) {
|
|
for (int64_t seed = startSeed; seed < endSeed; ++seed) {
|
|
checkSingleSeed(seed, n, d, radius);
|
|
}
|
|
}
|
|
|
|
struct Args {
|
|
int64_t startSeed = 0;
|
|
int64_t endSeed = 1'000'000;
|
|
int numThreads = std::thread::hardware_concurrency();
|
|
int chunkSize = 3;
|
|
int numChunks = 9;
|
|
int radius = 100;
|
|
};
|
|
|
|
[[noreturn]] void help(int exitCode = 1) {
|
|
std::cerr << "Usage: slime [args...]" << std::endl;
|
|
std::cerr << " -s <startSeed> Starting seed (default: 0)" << std::endl;
|
|
std::cerr << " -e <endSeed> Ending seed (default: 1000000)" << std::endl;
|
|
std::cerr << " -p <numThreads> Number of threads to use (default: number of CPU cores)" << std::endl;
|
|
std::cerr << " -n <chunkSize> Size of the slime chunk area to check (default: 3)" << std::endl;
|
|
std::cerr << " -d <numChunks> Number of chunks within square of chunkSize to check (default: square of chunkSize)" << std::endl;
|
|
std::cerr << " -r <radius> Radius of chunks around (0, 0) to check (default: 100)" << std::endl;
|
|
exit(exitCode);
|
|
}
|
|
|
|
Args parseArgs(int argc, char* argv[]) {
|
|
Args args;
|
|
if (argc == 2 && std::string(argv[1]) == "--help") {
|
|
help(0);
|
|
}
|
|
|
|
bool setNumChunks = false;
|
|
|
|
for (int i = 1; i < argc; i += 2) {
|
|
if (std::string(argv[i]) == "-s") {
|
|
args.startSeed = std::stoll(argv[i + 1]);
|
|
} else if (std::string(argv[i]) == "-e") {
|
|
args.endSeed = std::stoll(argv[i + 1]);
|
|
} else if (std::string(argv[i]) == "-p") {
|
|
args.numThreads = std::stoi(argv[i + 1]);
|
|
} else if (std::string(argv[i]) == "-n") {
|
|
args.chunkSize = std::stoi(argv[i + 1]);
|
|
} else if (std::string(argv[i]) == "-d") {
|
|
args.numChunks = std::stoi(argv[i + 1]);
|
|
setNumChunks = true;
|
|
} else if (std::string(argv[i]) == "-r") {
|
|
args.radius = std::stoi(argv[i + 1]);
|
|
} else {
|
|
help();
|
|
}
|
|
}
|
|
if (!setNumChunks) {
|
|
args.numChunks = args.chunkSize * args.chunkSize;
|
|
}
|
|
if (args.startSeed < args.endSeed && args.numThreads > 0 && args.chunkSize > 0 && args.numChunks > 0 && args.numChunks <= args.chunkSize * args.chunkSize && args.radius > 0) {
|
|
return args;
|
|
}
|
|
help();
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
auto [startSeed, endSeed, numThreads, n, d, radius] = parseArgs(argc, argv);
|
|
|
|
std::cout << "Searching for seeds with at least " << d << " slime chunks within " << n << "x" << n << " chunks within a radius of " << radius << "." << std::endl;
|
|
std::cout << "Checking seeds from " << startSeed << " to " << endSeed << " with " << numThreads << " threads." << std::endl;
|
|
|
|
auto startTime = std::chrono::high_resolution_clock::now();
|
|
auto totalSeeds = endSeed - startSeed;
|
|
std::vector<std::thread> threads;
|
|
int64_t seedsPerThread = totalSeeds / numThreads;
|
|
for (int i = 0; i < numThreads; ++i) {
|
|
int64_t startSeed = i * seedsPerThread;
|
|
int64_t endSeed = (i == numThreads - 1) ? totalSeeds : startSeed + seedsPerThread;
|
|
threads.emplace_back(checkSeeds, startSeed, endSeed, n, d, radius);
|
|
}
|
|
for (auto& t : threads) {
|
|
t.join();
|
|
}
|
|
auto endTime = std::chrono::high_resolution_clock::now();
|
|
std::chrono::duration<double> elapsed = endTime - startTime;
|
|
std::cout << "It took " << elapsed.count() << " seconds to check " << totalSeeds << " seeds, found " << foundSeeds.load() << " seeds that meet the condition." << std::endl;
|
|
return 0;
|
|
} |